
World Multi-conference on Systemics, Cybernetics and Informatics (SCI2001).
International Institute of Informatics and Systemics (IIIS), Orlando, 2001.

Towards a Field Configurable
non-homogeneous
Multiprocessors Architecture.

Jaquenod, Guillermo Adolfo, Villagarcía,
Horacio y De Giusti, Marisa.

Cita:
Jaquenod, Guillermo Adolfo, Villagarcía, Horacio y De Giusti, Marisa
(Julio, 2001). Towards a Field Configurable non-homogeneous
Multiprocessors Architecture. World Multi-conference on Systemics,
Cybernetics and Informatics (SCI2001). International Institute of
Informatics and Systemics (IIIS), Orlando.

Dirección estable: https://www.aacademica.org/marisa.de.giusti/52

ARK: https://n2t.net/ark:/13683/ptyc/cvd

Esta obra está bajo una licencia de Creative Commons.
Para ver una copia de esta licencia, visite
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es.

Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso
abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su
producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite:
https://www.aacademica.org.

https://www.aacademica.org/marisa.de.giusti/52
https://n2t.net/ark:/13683/ptyc/cvd
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es

Towards a Field Configurable non-homogeneous Multiprocessors Architecture

Guillermo A. JAQUENOD
Facultad de Ingeniería, Universidad del Centro de la Provincia de Buenos Aires.

La Plata, 1900– ARGENTINA.
<chipi@netverk.com.ar>

Horacio A. VILLAGARCÍA

Comisión de Investigaciones Científicas de la Pcia. de Buenos Aires.
Facultad de Informática, Universidad Nacional de La Plata.

La Plata, 1900 – ARGENTINA.
<hvw@info.unlp.edu.ar>

Marisa R. DE GIUSTI

Comisión de Investigaciones Científicas de la Pcia. de Buenos Aires.
Facultad de Informática, Universidad Nacional de La Plata.

La Plata, 1900– ARGENTINA.
<marisadg@volta.ing.unlp.edu.ar>

ABSTRACT

Standard microprocessors are generally designed to deal
efficiently with different types of tasks; their general purpose
architecture can lead to misuse of resources, creating a large gap
between the computational efficiency of microprocessors and
custom silicon.

The ever increasing complexity of Field Programmable Logic
devices is driving the industry to look for innovative System on
a Chip solutions; using programmable logic, the whole design
can be tuned to the application requirements.

In this paper, under the acronym MPOC (Multiprocessors On a
Chip) we propose some applicable ideas on multiprocessing
embedded configurable architectures, targeting System on a
Programmable Chip (SOPC) cost-effective designs. Using
heterogeneous medium or low performance soft-core processors
instead of a single high performance processor, and some
standardized communication schemes to link these multiple
processors, the “best” core can be chosen for each subtask using
a computational efficiency criteria, and therefore improving
silicon usage.

System-level design [1] [2] is also considered: models of tasks
and links, parameterized soft-core processors, and the use of a
standard HDL for system description can lead to automatic
generation of the final design.

Keywords: embedded multiprocessing, system-on-chip,
distributed heterogeneous embedded system, programmable
logic, IP cores, system-level design.

1. INTRODUCTION

Microprocessors are the dominant devices used in general-
purpose computations. Since a standard processor is designed to
solve efficiently tasks of different types, resources may be
misused or not used at all in a specific application, this lead to a

large gap between the computational efficiency of micro-
processors (software) and custom silicon (hardware).

If a given application is completely known and it will not
change, an ASIC (Application Specific Integrated Circuit) may
be designed; however, if the application is not completely
known or it can change, a software programmable unit has been
usually selected.

As the complexity of embedded systems grows, the industry is
being forced to look for SOC solutions (SOC: System On a
Chip), and different alternatives for hardware-software codesign
must be considered [3][4][5]. Recently, the availability of high-
density Field Programmable Logic devices has opened new
ways to explore, adding embedded processors to hardware
blocks as processing engines [6][7][8].

Almost every modern product behavior can be defined by
multi-task processes, and some different solutions must be
considered to synthesize it:

• Hardware-only: this solution is well suited for very high speed

applications, with simple control decisions (e.g., a router).
• Mono-processor multi task: using a single embedded

processor and an OS kernel, multiple tasks may be served in
parallel using a time-slice scheme. If real-time constraints
must be satisfied, a RTOS (Real Time Operating System) is
needed to provide an adequate service latency.

• Multi-Homogeneous processors: if highly parallel tasks must
be solved (e.g., image processing), many processors of the
same type running under a SIMD multiprocessing scheme
may be the optimal solution;. since processors must exchange
information, different buses have been proposed according to
the coupling degree of processes.

• Multi Non Homogeneous processors: if a process is described
by multiple, different tasks, different specialized processors
can be used, choosing the best core for each subtask (or group
of similar subtasks) with a computational efficiency criteria.

2. MULTI-TASK CHALLENGES

Any multitask application possesses some challenges related to
how processes run, how they interchange information, and how
they keep synchronized.

Communication and synchronization between processes: When
two or more tasks are running concurrently, some methods must
be provided for communication and synchronization between
processes:

• In single-processor architectures, the use of semaphores and

shared memory overcomes the problem; in this case the only
new requirement is the availability of indivisible TEST&SET
instructions.

• In multi-processor systems, a multimaster bus is often used to
access semaphores and shared memory, adding new levels of
complexity (bus arbitration, lock-prevent, access latency, etc.);
for SOC systems [9] it is usual to find high performance buses
like ARM’s AMBA, IBM’s CoreConnect, Silicore’s
Wishbone, or proprietary solutions. As an alternative, peer to
peer links can be used to communicate processes, changing
from bus to mesh topology. An innovative approach to
interprocessor communication for tightly coupled tasks were
the Transputers’ Tlinks [17], where no differences were made
–from a software point of view- if two tasks exchanged data in
the same or in different processors.

Task scheduling: When one CPU must serve multiple tasks, a
task scheduler is required to determine which task will run and
how much time, and what other task will be activated after. In
almost all cases this schedule is managed by a software OS,
being an interesting exception the hardware task scheduler built
within each transputer.

3. THE SOPC SOLUTION

With Field Programmable Logic (FPL) devices surpassing one
million gates, SOPC integrated solutions (SOPC: System on a
Programmable Chip) are a real option for embedded multitask
solutions.

Some companies are offering soft-core solutions for proprietary
processors (NIOS [13]) or standard (8051 and others [12]); for
intensive throughput applications hard-core solutions are also
offered, with pre-burned high performance processors (like
MIPS32_4Kc or ARM922 [14]) embedded together with large
blocks of memory and programmable logic. In any case, no
resources are built for hardware multitask scheduling.

An FPL core is a flexible logic fabric that can be customized to
implement any digital circuit after fabrication. FPL has led to a
new design paradigm, adding great flexibility to the design
process:

• Processor selection: when using soft-core solutions, the

processor can be selected according to the application needs.
• Processor resources: the designer can define what memory and

peripherals will be embedded. This feature provides efficient
silicon usage, and the possibility of adding standard or special-
purpose peripherals as required.

• IP (Intellectual Property): the reuse of existing validated
modules, that can be regarded as library blocks with a given
implementation, can dramatically reduce the design cycle.

• Reconfigurability: using programmable logic, a SOPC can be
developed before some specifications have been defined, or
accommodated to last minute changes. In some cases,
reconfigurability can be used for a post-market upgrade or
customization feature.

It is of main importance to understand that any SOPC design
involves a complex set of hardware-software codesign
decisions, with product cost and flexibility in mind, and real-
time constraints to be met. Each SOPC defines a specific design
scenario: it is obvious that decisions, target costs, complexity
and timing constraints for a 622 Mbps ATM bridge are
absolutely different to those for an high-end automotive
computer, and therefore it is clear that the design criteria will be
different.

4. THE MPOC NON-HOMOGENEOUS

MULTIPROCESSORS ON-A-CHIP PROPOSAL

The MPOC (MultiProcessors On a Chip) proposal is oriented to
cost-effective applications: the key idea is that the use of
multiple non homogeneous and simple processors [10][11] can
exploit the strengths of different architectures for different tasks
more effectively than a single high performance CPU. This
proposal is not oriented to dynamically reconfigured devices,
neither to high-performance mainstream computing applications
with complex features such as cache memories, dynamic
memory allocation, garbage collection or similar matters.

From a “software” point of view, the MPOC approach looks for
a structured and a simple way to build multitask applications,
with abstraction of the hardware resources involved in the
solution.

From a “hardware” point of view, the MPOC approach looks for
a structured way to embed heterogeneous medium or low
performance soft-core processors, linking them through the use
of standardized communication schemes. The selection criteria
for the different processing units involves many aspects,
according to the application (general purpose or specialized), the
hardware required to manage the multi-process environment,
and the memory and I/O needs [18]. The ability of choosing in
each case a processor just sized to the requirement can reduce
the fitting challenges, minimize routing delays and fan-out, and
maximize overall performance in speed and/or cost.

That means, the “best” core can be chosen for each subtask (or
group of similar subtasks) using a computational efficiency
criteria, and therefore improving silicon usage. Using field
programmable logic, software and hardware compilation can be
done together, making feasible the hardware/software codesign
paradigm.

5. MPOC DESCRIPTION

A SOPC multiprocessor can be described as a hierarchical
structure of processors, tasks, channels and ports. Through the
use of a standard HDL for system-level description, automatic
generation of the final design can be achieved.

A SOPC: is built using a set of processors, I/O ports and
channels. From an HDL point of view, the SOPC description
will include a complete enumeration of I/O ports, multiple
instances of different processors and channels, and the

interconnects between processors, or between processors and
I/O ports.

Using VHDL hardware description language, a SOPC entity
could be defined as:

LIBRARY mpoc; USE mpoc.sopc.all;
ENTITY this_sopc IS
 GENERIC (pin_mapping: string :=
 “IN_a:23:HiZ,..,IN_k:31:PUP,”&
 “OUT_a:44:PP:fast,..,OUT_b:35:OD:slow,”);
 PORT (
 -- global signals
 clk,clr: IN STD_LOGIC;
 -- external I/O
 ...: OUT STD_LOGIC;
 ...: IN STD_LOGIC;
END ENTITY this_sopc;

ARCHITECTURE x OF this_sopc IS
 SIGNAL link_1: LPP8S1;
 ...
 SIGNAL link_j: ...;

BEGIN
 processor_1: ENTITY work.mcu_1 PORT MAP (..);
 ...
 processor_n: ENTITY work.mcu_n PORT MAP (..);
 channel_1: ENTITY mpoc.chpp8s1 PORT MAP (..);
 ...
 channel_m: ENTITY ... PORT MAP (..);
END ARCHITECTURE x;

Some points must be noted in this top-level description:

• A package sopc describes non-VHDL data types (such as

links) and objects (different types of channels)
• A generic constant string pin_mapping is used to define

some architectural synthesis attributes of all I/O ports (like pin
number, slew rate, pull-ups, etc.). This constant can be
inherited from lower hierarchy objects and is used to generate
the constraints file required by the HDL compiler.

• The entity’s PORT field includes the I/O ports used by all
internal processors

• The ARCHITECTURE local signals instantiate the interprocessor
channels, using data types (LPP8S1..) defined in the sopc
package

• No specific hardware is described; only processors and
channels are instantiated and connected. Note that channels
are standard MPOC objects, therefore their description comes
from the mpoc library; instead, embedded processors are
special cases of parameterized processors, and they are taken
from the work directory.

A processor: has a processor type and a processor name. Each
processor entity is created in the work directory, as a special
instance of a “standard” parameterized processor, with specific
parameters values (ROM memory size, RAM memory size,
name and type of I/O ports, name and type of channels, etc.),
and some optional settings (like DEBUG_STATUS).

LIBRARY mpoc; USE mpoc.sopc.all;
ENTITY mcu_n IS
 GENERIC (
 pin_mapping: string :=
 “IN_a:23:HiZ,.., OUT_b:35:OD:slow,”
 code_generator: string := “mcu_n.cmd”);
 PORT (
 -- global signals
 clk,clr: IN STD_LOGIC;
 -- external I/O
 ...: OUT STD_LOGIC;
 ...: IN STD_LOGIC;
 -- external channels
 ...: OUT ...
 ...: IN ...
END ENTITY mcu_n;

ARCHITECTURE x OF mcu_n IS
 SIGNAL ilink_1,..,ilinkj: LPP8S1;
BEGIN
 this_cpu : ENTITY mpoc.mc6805
 GENERIC MAP (..=>..,..=>..)
 PORT MAP (..=>..,..=>..);
 ...
END ARCHITECTURE x;

The processor description has also some points to be noted:

• The GENERIC field only contains the pin_mapping constant

with the architectural synthesis attributes of I/O ports used by
this processor.

• This field also defines a generic string constant
code_generator to point to a script file (“mcu_n.cmd” in
this example) needed to transform the source code of the tasks
assigned to this processor (written in C, C++, Assembler or
other languages) in a synthesizable format. As an example,
“MIF” format when using ALTERA FLEX10K devices.

• The entity’s PORT field now includes not only the I/O ports
used by this processor, but also the channel ports required to
communicate with other processors.

• If this processor supports multitasking, and the internal tasks
must communicate between them, some local signals are
instantiated in the ARCHITECTURE field for intertask channels.

• An specific instance “this_cpu” of a standard parameterized
processor (mpoc.mc6805 in the example) is created, where
parameters values are given.

A Task: has a name, a description of the channel ports it uses,
an I/O ports enumeration, and a source code; it is assigned to a
specific processor, and a specific command file is used to
transform the source code description to a synthesizable format.

A task is mainly a “software object”, although some pre-compile
information (such as I/O ports and channel ports) and some
post-compiled information (code size, RAM size, executable
code) is used to parameterize the VHDL description of the
associated processor.

To enable the use of different C/Assembler compilers and
linkers but still forcing coherence, a good solution is to include
pre-compile information in the source code as synthesis

Processor

Task

Task

Processor

Task

Task

Processor

Task

Task

PtP Channel I/O port

Channel Ports

Processor

SOPC

Broadcast

Channel

Processor

Task

Task

Processor

Task

Task

Processor

Task

Task

PtP Channel I/O port

Channel Ports

Processor

SOPC

Broadcast

Channel

directives or attributes formatted as comments, using a ruled
syntax (e.g., strings such as /*synthesis <directive>*/); this
method to embed directives or attributes is commonly used by
EDA design tools [16]. Using these directives, some hardware
information (name, type and address of I/O and channel ports,
pin numbers of I/O ports) can be automatically exported from
the source code to the processors VHDL instances.

A Channel: is usually a hardware virtual object, since it only
describes pass-through connections between “talkers” and
“listeners”; it is only in the case of multi-master channels, when
wired-OR lines are required to resolve access rights (I2C or
CAN), where a channel may consume some hardware resources.

In all cases, however, a channel is used as a formalism to force
type coherence in its assigned channel ports. Channels are
defined within the mpoc library, being included as components
in the sopc package.

Every channel instance has:

• A channel name.
• A channel type, associated to a physical link (Peer to Peer,

Broadcast Single Master or Broadcast Multimaster, or others)
and to a logical protocol related to the handshake method,
access arbitration, etc.; each channel type is described as a
separate component in the sopc package.

This is a key point of the MPOC proposal: the use of “standard”
channel types having a syntax defined in the sopc package; if
only standardized communication schemes are used, both for
inter and intra-processor messages, each processor interface can
be designed with abstraction of the partner’s type, ensuring
connectivity and avoiding a multiplicity of protocols; this
feature can also open the door to a multi-vendor portfolio of IP
solutions.

The following is a VHDL definition of a “peer to peer” serial
port that transports 8-bit packets:

LIBRARY mpoc; USE mpoc.sopc.all;
ENTITY chpp8s1 IS
 PORT(
 din: IN LPP8S1; rxrdy: IN STD_LOGIC;
 dout: OUT LPP8S1; chrdy: OUT STD_LOGIC);
END ENTITY chpp8s1;

ARCHITECTURE x OF chpp8s1 IS
BEGIN
 dout <= din; chrdy <= rxrdy;
END ARCHITECTURE x;
END;

This description, included in the mpoc library, shows how the
right type of data is required to define the pass-through
connections.

A Channel port: has a fixed relationship with a given channel,
a task and a processor.

An I/O port: has an I/O pin number, and is described within a
task. As detailed before, synthesis attributes such as “I/O port”
and “I/O pin number” are the best way to export these attributes
to the HDL description of the processor where this port is
connected.

6. THE SOPC PACKAGE

The mpoc library and the sopc package are of main importance
for the MPOC proposal. As shown in the listing, the sopc
package describes the new data types associated to channels,
and the name and type of every channels port.

library IEEE; use IEEE.std_logic_1164.all;
package sopc is
 type LPP8S1 is STD_LOGIC;
 type LPP8P is STD_LOGIC_VECTOR (0 to 7);
 ...
 component chpp8s1
 port (din: IN LPP8S1; rxrdy: IN STD_LOGIC;
 dout: OUT LPP8S1; chrdy: OUT STD_LOGIC);
 end component;
 component chpp8p
 port (din: IN LPP8P;...
 dout: OUT LPP8P;...);
 end component;
 component ...
 port (...);
 end component;
end package;

7. THE MPOC BUILDER

The name MPOC BUILDER identifies a Graphic User Interface,
still under development, that will be used for MPOC design.

The definition of a MPOC design involves three main steps:

• Instantiation of processors: a processor can be created,

modified or deleted. To create a new processor it is required
to give it a name, and to select its type from the list of
configured processors. During this step, or later, the designer
can add/modify/remove links to existing channels, and define
or clear the assigned task.

• Channels definition: a channel can be created, modified or
deleted. To create a new channel it is required to give it a
name, and to select its type from the list of configured
channels. At this moment, or later, the designer can link the
channel ports to specific ports of existing processors.

• Task definition: a task can be added or removed. When a
task is added, the name of the source code and the name of
the command file used to process it are both required.

Once an MPOC is defined, a “MAKE” utility can be invoked to
process the tasks’ source code, to create the processors
instances, to build the top VHDL files, and to run the synthesis
tool. This utility reads synthesis directives/attributes from the
source code, and upgrades an internal data-base, used later to
create the processors instances.

Additionally, the MPOC GUI has auxiliary functions to add or
remove new types of processors and channels from the list of
available objects; this maintenance process upgrades the sopc
package file and adds these new processors to the mpoc library.
Also, it should be configured to define the hardware and the
place&root synthesis tools needed to generate the final
hardware.

8. SYNCHRONIZATION

Tasks synchronize themselves by messages sent and
acknowledged through channels. Although the MPOC proposal
defines standard channels from the channel side point of view,

each processor can manage internally the transmission/reception
of messages in a different way.

If the processor has an internal RDY feature (analog to the RDY
line used to access slow memories), transmission/reception of
messages can behave as blocking statements. A transmitter
sending a message halts the task until the message is
acknowledged; similarly, a receiver request for data halts the
task until the message arrives.

If no blocking is desired, interrupts generation or polling can be
used for synchronization.

9. EXAMPLE OF CHANNEL PORTS

Proposed channel interfaces are serial monobyte/monoword,
parallel links, and shared memories.

A parallel port: The most simple interprocessor port is a
blocking parallel port. The talker side uses registers to latch the
data and a state machine for synchronization; the listener side
only has another small state machine.
• In the talker side the

rdy line is deasserted
and new is asserted –
halting the processor-
when new data is
written (ld asserted);
when the listener reads
the data, ack is
activated, the listener
restarts (rdy=’1’) and
new is cleared.

• In the listener side, if
there is no new data
when the listener tries to read, the listener processor is halted
until data becomes available.

A VHDL93 declaration of both ports could be:

ENTITY tx_ptp_8p IS
PORT (
-- global signals
 clk,clr: IN STD_LOGIC;
-- public signals (channel side)
 txpdat: OUT LPP8P;
 new : OUT STD_LOGIC; -- new data flag
 ack: IN STD_LOGIC; -- ack from listener
-- private signals (processor side)
 ld : IN STD_LOGIC;
 rdy : OUT STD_LOGIC; -- sync output
 data: IN STD_LOGIC_VECTOR (0 TO 7));
END ENTITY tx_ptp_8p;

ENTITY rx_ptp_8p IS
PORT (
-- global signals
 clk,clr: IN STD_LOGIC;
-- public signals (channel side)
 rxpdat: IN LPP8P;
 new : IN STD_LOGIC; -- new data flag
 ack: OUT STD_LOGIC; -- ack to talker
-- private signals (processor side)
 ld : IN STD_LOGIC;
 rdy : OUT STD_LOGIC; -- sync output
 data: OUT STD_LOGIC_VECTOR (0 TO 7));
END ENTITY rx_ptp_8p;

A serial talker: uses 2 lines, one for transmitting serial data and
the other for acknowledgment purposes. Each time the talker
transmits a byte, a start bit (logic ‘1’) is output on the channel,
and then 8 bits of data. For synchronization, after transmission is
started, the remote listener deasserts chrdy and the local
processor is halted (rdy=0) until the listener reads the data
(asserting chrdy to ‘1’).

A serial channel has the following benefits:
• It is simple, taking only few resources (e.g., less than 30

macrocells when using a FLEX10K device).
• It uses very low connectivity resources within the FPL device.

The block-level architecture, a functional simulation, and a
VHDL93 definition of a transmitter port (for peer to peer, 8 bits
data, serial single-bit channel), could be as follows:

ENTITY tx_ptp_8s1 IS
PORT (
-- global signals
 clk,clr: IN STD_LOGIC;
-- public signals (channel side)
 txsdat: OUT STD_LOGIC; -- serial output
 chrdy: IN STD_LOGIC; -- ack input
-- private signals (processor side)
 ld : IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (0 TO 7);
 rdy : OUT STD_LOGIC); -- sync output
END ENTITY tx_ptp_8s1;

In this serial port, the data frame start bit behaves as the
transmitter handshake signal (equivalent to new in the parallel
port); in this instance chrdy is the receiver’s response
(equivalent to ack in the parallel port).

Other interfaces: many other interfaces between processors
may be proposed, as a function of each FPL architecture. As an
example, shared memories can be easily implemented when
using ALTERA FLEX10KE devices, where dual port memory
blocks (EABs) are available as a standard feature.

10. ADDING MULTITASK CAPABILITIES TO

EMBEDDED PROCESSORS

Multitask processors are not common as IP solutions in the
programmable logic market. Multitasking management involves
context-switching, sleeping/waking up of processes, hardware

clk,clr

rd

rdy

d
a
ta

(t
a
lk

e
r

s
id

e
)

ld

rdy

d
a
ta

(l

is
te

n
e
r

s
id

e
)

new

ack

clk,clr

rd

rdy

d
a
ta

(t
a
lk

e
r

s
id

e
)

ld

rdy

d
a
ta

(l

is
te

n
e
r

s
id

e
)

new

ack

data

clk,clr,ld

rdy

txsdat

chrdy

‘0’

‘1’

control

9 bit PISO Shift Register

data

clk,clr,ld

rdy

txsdat

chrdy

‘0’

‘1’

control

9 bit PISO Shift Register

schedulers, and channel interfaces, and is costly from the point
of view of hardware resources and processing overhead.

However, if the number of tasks is reduced, and they are
completely known before the hardware is synthesized, these
problems can be enormously simplified:

• Instead of using the stack to save internal registers, a

hardware stack based on a circular queue can be added to
each register, with as many positions as tasks are defined for
this processor.

• Three different events can put a task in the “sleeping” state: a
timeout generated by the hardware scheduler, a blocking write
on a channel that waits for acknowledge, and a blocking read
of a channel that has no new data.

• Since data and code size of each task are known and fixed, a
simple adder (or two, for a Harvard architecture) and one (or
two) constant generators can be used to transform tasks’
addresses in real memory addresses, adding fixed offsets.

If a “round-robin” priority scheme is enough, the task scheduler
needed to manage a multitask system is a simple state machine
plus a “slice” timer, and it requires very low hardware resources.
The inputs to this state machine are the RDY signals coming
from the channel ports, and its outputs control the offset adders
and the registers stacking queues.

11. CONCLUSIONS

If an application is known before the design cycle is started, an
optimized product can be created by tuning the hardware and the
software to the application requirements. It has been shown that,
as a main difference with standard multitask systems, software
is defined before the hardware synthesis process is started.

This new hardware/software codesign paradigm, with intensive
use of IP pretested solutions (both for hardware and software),
and the fast hardware design cycles offered by Field
Programmable Logic, will ensure a very reduced TTM (time to
market). But, the most important conclusion is that by defining a
common public design environment and some “standard”
channels, a new and wide market is open, making feasible the
fast integration of IP solutions coming from different partners.

This is a starting proposal, and many decisions are still taken by
the designer. A broad research field is opened to look for
automatic optimization algorithms (such as Search Explore
Refine [15]), and performance & resources evaluation. Another
field to explore is how a common interface to OnChip
Emulation circuits could be used for multiprocessors debugging.

12. REFERENCES

[1]. J.Plantin, E.Stoy, “Aspects on System-Level Design”,

Proc. of the 7th. Intl. Workshop on Hardware/Software
Codesign. Rome, Italy, May 1999, pp.209-210.

[2]. S.Y.Liao, “Towards a New Standard for System-Level
Design”, Proc. of the 8th. Intl. Workshop on
Hardware/Software Codesign. San Diego, USA, May
2000, pp.2-6.

[3]. P.Coste et al, “Multilanguage Design of Heterogeneous
Systems”, Proc. of the 7th. Intl. Workshop on
Hardware/Software Codesign. Rome, Italy, May 1999,
pp.54-58. .

[4]. H.Oh, S.Ha, “A Hardware-Software Cosynthesis
Technique Based on Heterogeneous Multiprocessor
Scheduling”, Proc. of the 7th. Intl. Workshop on
Hardware/Software Codesign. Rome, Italy, May 1999,
pp.183-187.

[5]. R.S.Janka, L.M.Wills, “A Novel Codesign Methodology
for Real-Time Embedded COTS Multiprocessor-Based
Signal Processing Systems” , Proc. of the 8th. Intl.
Workshop on Hardware/Software Codesign. San Diego,
USA, May 2000, pp.157-161.

[6]. M.Meerwein et al, “Linking Codesign and Reuse in
Embedded Systems Design”, Proc. of the 8th. Intl.
Workshop on Hardware/Software Codesign. San Diego,
USA, May 2000, pp.93-97.

[7]. S.J.E.Wilton, R.Saleh, “Programmable Logic IP Cores in
SOC Design: Opportunities and Challenges”, IEEE
Custom Integrated Circuits Conference, May 2001.To be
published.

[8]. P.Chou et al, “ipChinook: An Integrated IP-based Design
Framework for Distributed Embedded Systems”, DAC-99,
http://www.cs.washington.edu/research/chinook/COHPB9
8.html.

[9]. R.Usselmann, “Open Cores SoC Bus Review”, Rev.1.0,
http://www.opencores.org, Jan. 2001.

[10]. G.Jaquenod, M.De Giusti: "Diseño de microcontroladores
empotrados mediante procesamiento serial: análisis
usando FLEX10K para sintetizar un microcontrolador tipo
COP8Sax”. VII Workshop IBERCHIP, Montevideo,
Uruguay, March 22, 2001.

[11]. G.Jaquenod.: "Diseño de un microcontrolador MC6805
usando lógica programable FLEX de ALTERA". VI
Workshop IBERCHIP, Sao Paulo, Brasil, March 2000

[12]. ALTERA Corp., “Intellectual Property Catalog”. San José,
CA, USA, 1999.

[13]. ALTERA Corp., “NIOS Soft core Embedded Processor
Data Sheet. Version 1”. San José, CA, USA, 2000.

[14]. ALTERA Corp., “ARM-based Embedded Processor
Device Overrview. Version 1.1”, “MIPS-based Embedded
Processor Device Overrview. Version 1.1”. San José, CA,
USA, 2000.

[15]. R. Dömer et al, “Specification and Design of Embedded
Systems”, it+ti Magazine N° 3, Oldenbourg Verlag,
Munich, Germany, June 1998.

[16]. “Synplicity Synthesis Reference Manual”. Synplicity Inc.,
Sunnyvale, CA. USA, May 2000.

[17]. INMOS Ltd., “Transputer Reference Manual”. Prentice
Hall, ISBN 0-13-929001-X, UK, 1988.

[18]. H.A.Villagarcía, O.Bria, “Diseño de bloques IP: Progra-
mabilidad y Re-utilización”. WICC2001, San Luis,

Argentina, May 2001. To be published.

