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Abstract: During device operation, SRAM based ALTERA devices store configuration data in 

volatile SRAM cells, therefore that information must be reloaded each time the device powers 

up. The configuration data to be loaded must be retrieved from some non-volatile source such 

as special configuration memories or external sources, using different configuration schemes. 

The use of Configuration devices is very direct and simple, but these benefits are sometimes 

obscured by its cost, that can get over the cost of the device to be configured. The other 

configuration methods are a bit more complex and require the use of some I/O pins of an 

external microprocessor, but they can be useful to attain simple and cheap configuration 

methods. 

This paper describes the use of standard, very low cost serial EEPROM memories for 

configuration, using minimum microprocessor resources, in Passive Serial Configuration 

mode; in this case, the EEPROM memory can be used not only to store configuration data but 

also some other non-volatile information required by the microprocessor. 

 

 

1. Introduction 
 

During device operation, SRAM based ALTERA devices store configuration data in volatile 

SRAM cells, therefore that information must be reloaded each time the device powers up. That 

configuration data must be retrieved from some non-volatile source such as special 

Configuration Devices or through an external microprocessor, using different configuration 

schemes (Table 1): 

  

Table 1: Configuration Modes 

Configuration scheme Device Family Typical use 

Configuration device (CD) APEX20K, FLEX10K 

ACEX1K, FLEX6000 

Configuration with the EP16, EP8, EPC2, EPC1 or EPC1441 
configuration devices 

Passive Serial (PS) APEX20K, FLEX10K 

ACEX1K, FLEX6000 

Configuration with a serial synchronous microprocessor interface 
and the MasterBlaster, ByteBlasterMV or BitBlaster 

Passive Parallel Synchronous 
(PPS) 

APEX20K 

ACEX1K, FLEX10K 

Configuration with a parallel synchronous microprocessor 
interface 

Passive Parallel 
Asynchronous (PPA) 

APEX20K 

ACEX1K, FLEX10K 

Configuration with a parallel asynchronous microprocessor 
interface, that treats the target device as memory 

Passive Serial Asynchronous 
(PSA) 

FLEX6000 Configuration with a serial asynchronous microprocessor interface 

Joint Test Action Group 
(JTAG) 

APEX20K 

ACEX1K, FLEX10K 

Configuration through the IEEE 1149.1 pins 

 



The use of configuration memories (CD method) such as the EP1441, EPC1, EPC2, EPC8 or 

EPC16 is very straightforward, but their benefits may be obscured by it cost, which in the case 

of ACEX1K devices can get over the cost of the device to be configured. As an additional 

drawback, configuration memories can be only used to store configuration data, and nothing 

more. 

 

The other configuration methods are a bit more complex and may require the use of a few I/O 

pins of an external processor, but they can still be useful to attain simple and cheap 

configuration methods. Specifically, the availability of standard, very low cost EEPROM 

memories with serial interfaces can offer new alternatives to the configuration problem; this 

solution requires minimum microprocessor resources, allowing the processor to use the 

EEPROM memory to store not only configuration data but also some other non-volatile 

information required by the application. 

 

 

2. Configuration File Sizes 
 

Each different device requires configuration files of different size, as described in Table 2: 

 

Table 2: Configuration File Sizes 

Device Data Size 
(Bits) 

Data Size 
(Kbytes) 

EP20K400 3,878,000 474 

EP20K200 1,950,000 238 

EP20K100 985,000 121 

EPF10K250A 3,300,000 403 

EPF10K200E 2,757,000 337 

EPF10K130E 1,840,000 225 

EPF10K130V 1,600,000 194 

EPF10K100E 1,336,000 164 

EPF10K100, EPF10K100A, EPF10K100B 1,200,000 146 

EPF10K70 892,000 109 

EPF10K50E, EP1K50 785,000 96 

EPF10K50, EPF10K50V 621,000 76 

EPF10K40 498,000 61 

EPF10K30E, EP1K30 470,000 58 

EPF10K30A 406,000 50 

EPF10K30 376,000 46 

EPF10K20 231,000 29 

EPF10K10A, EP1K10 120,000 15 

EPF10K10 118,000 15 

EPF6024A 398,000 49 

EPF6016, EPF6016A 260,000 32 

EPF6010A 260,000 32 

 

These numbers can be used only as an estimate because different MAX+plus II or Quartus II 

software versions may add a slightly different number of padding bits during programming. 

However, it must be noted that most of the cost-sensitive devices (typed in italics) have 

configuration file sizes under one Mbit. 

 

 

3. The PASSIVE SERIAL configuration mode 
 

In PASSIVE SERIAL (PS) configuration mode, an external controller passes configuration data 

to one or more devices via a serial data stream. The hardware resources required by the 



controller to configure such devices are very reduced, as shown in Figure 1, involving only the 

use of five lines: two bi-directional lines (CONF_DONE and nSTATUS), and three device input 

lines (DATA, nCONFIG and DCLK). 

PS configuration mode can 

be used to configure merely 

one device, or a chain of 

devices; in the last case, the 

nCEO output pin form the 

first device is cascaded into 

the nCE input pin of the 

second device, and so on. It 

is a three steps process: 

 

• Start: the controller 

checks that nSTATUS is 

high, puts a zero on 

nCONFIG, waits until 

CONF_DONE and 

nSTATUS go to zero, 

then writes a one on 

nCONFIG and waits until 

the target device releases nSTATUS. 

 

• Data transfer: after the configuration process has started, the microprocessor places the 

configuration data one bit at a time, generating DCLK positive edges to input this data in the 

target devices, with a clock frequency up to 16MHz. Following the falling edge of DCLK 

after all it configuration bits are received, the device just configured releases CONF_DONE 

and pulls down it nCEO output. While loading data, the controller must check the nSTATUS 

line, which is pulled down by the device under configuration if it detects some error. This 

error detection capability is obtained through checksum information embedded with the 

configuration data. 

 

• Initialization: after CONF_DONE goes high, DCLK must be clocked 40 additional times for 

APEX devices and 10 times for FLEX devices to initialize the device, going into user mode. 

When multiple devices are configured, the wired-AND CONF_DONE line remains low until 

the last device is configured, therefore all devices go to Initialization mode at the same time. 

 

 

A timing diagram of the 

configuration process is 

shown in Figure 2, 

highlighting the different 

steps. From a micro controller 

point of view (where time 

units are usually measured in 

microseconds) the time 

constraints to be satisfied are: 

 

tCFG: nCONFIG low pulse width must be greater than 8 microseconds 

tSTATUS: the device can take up to 40 microseconds to release nSTATUS 

tCF2CK: the delay from nCONFIG high until the first rising edge on DCLK must be greater 

than 40 microseconds 
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There is a point to be noted about the PS mode: after configuration has ended, any change in the 

DCLK or DATA lines is ignored by the target devices. This point can be used to share these 

microprocessor lines with other applications. 

 

 

4. About .HEX, .TTF and .RBF files 
 

After project compilation, the MAX+PLUS II Compiler automatically generates SRAM Object 

Files (.SOF), Tabular Text Files (ASCII file with extension .TTF), and Hexadecimal Files 

(ASCII file with extension .HEX), that contain the data for device configuration in a PS 

configuration scheme. By using the Convert SRAM Object Files command (File menu), the 

designer can also create a “raw binary file” (with extension .RBF), that stores the configuration 

data in binary format. 

 

In all cases, the configuration data is represented as bytes that must be sent to the configured 

device with the LSB first. 

 

HEX: it is an ASCII text file (with the extension .hex) in the Intel Hex format, 

automatically generated by the Assembler when an SRAM device is assigned as the target 

device. Many SRAM Object Files (.SOF) generated during compilation may be combined 

in only one HEX file with the Convert SRAM Object Files command.  

An extract of a sample HEX file is shown: 

 
:020000040000FA 
:2B000000FFFF62FF2500FFFFFFFFFFFFFFFFFFFFFFF...FF76 
:2B002B0060188661188661188661188661188661188...DDF9 
... 
:2B39720060188661188661188661188661188661188...A523 
:02399D00FFFF2A 
:00000001FF 

 

If the second line is analyzed: 
 

 :     Signals a line start 
 2B    Number of data bytes in this line (hex 2B=43 decimal) 
 0000  Address of the first data byte 
 00    Used to identify programming data 
 FF    1st data byte (255 decimal) 
 FF    2nd data byte (255 decimal) 
 62    3rd data byte ( 98 decimal) 
 FF    4th data byte (255 decimal) 
 25    5th data byte ( 37 decimal) 
 00    6th data byte (  0 decimal) 
 FF    7th data byte (255 decimal) 
 ...   intermediate bytes 
 FF    43th (last) data byte 
 CC    Line Checksum  
  

In the same way, the last programming data line (:02399D00FFFF2A) has only two bytes 

with value FF, FF. 

 

TTF: it is an ASCII text file (with extension .TTF) that stores the configuration data in a 

tabular format. If the same design is analyzed, this text file starts as follows: 

 
255,255, 98,255, 37,  0,255,255,255,255,255,255,255,255,... 

 



In the TTF file, each configuration data byte is written using “packs” of three characters 

in decimal format (left padded with spaces), with a comma as separator between packs. 

 

RBF: the RBF is a binary file, where each configuration data byte is stored using only one 

file byte. The RBF file of this design, inspected with a binary editor, could be read as: 

 
0000 FF FF 62 FF 25 00 FF FF FF FF ... 

 

A RBF file is the binary equivalent of a TTF file. 

 

To write the EEPROM, the information stored in these files must be bit reversed before 

programming, because when the EEPROM is read the first output data bit is the MSB, whereas 

ALTERA devices require the LSB to be the first. 

 

 

5. The operation of the I
2
C EEPROM memories 

 

Serial EEPROM memories fall in two main categories: I
2
C (2 wires interface) and SPI or 

MICROWIRE (3 wires interface). In the case of I
2
C memories this interface between a 

controller and the EEPROM memory is achieved through the use of the lines SCL and SDA. 

 

The I
2
C standard defines four types of “agent” on the bus: 

 

• Transmitter: The device which is currently sending data to the bus 

• Receiver: The device which is currently receiving data from the bus 

• Master: The device which initiates a transfer, generates clock signals and terminates a 

transfer. 

• Slave: The device addressed by the MASTER. 

 

During I
2
C communications, data on the SDA pin may change only during SCL low time 

periods, being sampled in the rising edge of SCL; however, the exceptional change of SDA 

during SCL high periods is used to indicate a START or STOP condition. All I
2
C transactions 

must begin with a START condition and terminate with a STOP condition; they are generated 

by the master and are defined as: 

 

• A START condition is signaled by a High-to-Low transition on SDA with SCL high; it must 

precede any other command. 

• A STOP condition is signaled by a Low-to-High transition on SDA with SCL high. 

 

Address and Data words are serially transmitted to and from the EEPROM in 8-bit words, 

fo;;owed by a ninth clock pulse on SCL (generated by the MASTER), when the transmitter 

must release the SDA line allowing the receiver to pull it down to ACKnowledge that it has 

received the word. After the transmitter receives the ACK (usually sent after each byte of data) 

the transmitter can continue sending data. To avoid contentions, SDA operates as an Open 

Drain output, making mandatory the use of a Pull-Up resistor. 

 

For every transaction one control byte is sent after a START condition. This control byte 

consists of a unique 7-bit device address and a R/W (read/write) bit. 

 

Some devices have address pins which allow you to change the address of a device. For 

example, an EEPROM with three address pins A2, A1, A0 pins connected to GND would have 

a address of 1010000 while if A2,A1,A0 are connected to Vcc the address would be 1010111. 

Other devices use  these bits in the control byte as "page selection bits". 

 



In the case  of the AT24C1024 memory, a 1024Kbit EEPROM (organized as 128 Kbytes), the 

control byte has the format shown in Figure 3. 

 

• This 1024K EEPROM uses the one device 

address bit A1, allowing the connection of two 

devices on the same bus, and this bit must compare to the corresponding hardwired input pin. 

• The seventh bit P0 is the memory page address bit, being the 17th address bit of the data 

word address that follows. 

• The eighth bit R/W selects a read operation (if R/W=1) otherwise a WRITE. 

 

After the control byte is sent, the receiver sends an acknowledgement ("ACK") to the 

transmitter. Figure 4 shows the waveforms related to the control byte transmission process: 

 

• In the starting point SCL is low, and SDA is 

in tri-state. The pull-up resistor drives SDA 

to one. 

• The processor drives SCL high. 

• A START is initiated when the processor 

drives SDA low while SCL is high. 

• The processor drives SCL low. 

• To write a one, the processor drives SDA to 

tri-state, because the pull-up will drive SDA high. 

• A complete positive SCL pulse is issued 

• The processor drives SDA low, and a complete positive SCL pulse is issued 

• The processor SDA goes to tri-state, the pull-up drives SDA high, and a complete positive 

SCL pulse is issued. 

• The processor drives SDA low, and two complete positive SCL pulse are issued 

• The processor drives SDA to tri-state or to zero, according the A1 value, and a complete 

positive SCL pulse is issued 

• The processor drives SDA to tri-state or to zero, according the Page Select (P0) value, and a 

complete positive SCL pulse is issued 

• The processor drives SDA to tri-state or to zero, according the R/W value, and a complete 

positive SCL pulse is issued 

• The processor drives SDA to tri-state. Simultaneously, the SDA line is pulled low by the 

EEPROM to indicate an acknowledge. 

• When driving SCL high, the processor captures the SDA value. It must be zero, otherwise it 

signals an error. 

• When SCL is driven low, the EEPROM releases SDA to tri-state and the high memory 

address byte transfer may start. 

 

There are two write methods and three read methods to access the EEPROM contents: 

 

• BYTE WRITE: a byte write operation is used to put data into a specific memory location. A 

byte write operation requires a START, the 8-bit device address (with R/W=0 and P0 set to 

the value of the 17th address bit), the ACK from the receiver, the high byte of the address, 

the ACK from the receiver, the low byte of the address, the ACK from the receiver, the data 

to be written, the ACK from the receiver, and a STOP. Once the STOP is received, an 

internal write process is triggered and the EEPROM will not respond until the write is 

complete. 

• PAGE WRITE: a page write operation is be used to program up to 256 bytes at a time in a 

given page. It is initiated in the same way as a byte write, but the controller does not send a 

STOP condition after the first data word is clocked in. Instead, after the EEPROM 

acknowledges receipt of this data word, the controller can transmit up to 255 more data 
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words (waiting for the ACK after each byte is sent). To terminate the page write sequence 

the controller issues a STOP condition. The data word address lower 8 bits are internally 

incremented following the receipt of each data word, but the higher data word address bits 

remain unmodified; thus, when the low data word address reaches 255, the following byte is 

placed at the address 0 in the same page. 

 

• CURRENT ADDRESS READ: the internal data word address counter maintains the last 

address accessed during the last read or write operation, incremented by one; this address 

stays valid between operations as long as the chip power is maintained. For a current 

address read the controller sends a device address with the R/W select bit set to ‘1’ receives 

the acknowledge from the EEPROM, but then it is the EEPROM who takes the transmitter 

role sending the requested data to the controller (note that the controller does not send any 

address). To close the current address read operation, after the EEPROM sent a byte the 

receiver (the controller in this case) does not respond with an ACK but issues a STOP 

condition. This is called a "NACK". 

 

• RANDOM READ: a random read requires a dummy byte write sequence to load in the 

internal data word address register followed  by a current address read. Following a byte 

write command and after the device address word (with R/W=0) and data word address have 

been clocked in and acknowledged by the EEPROM, the controller aborts the byte write 

generating another START condition. The controller now initiates a current address read by 

sending a device address (now with R/W=1). The EEPROM acknowledges the device 

address and serially clocks out the data word. The controller sends a NACK and the 

transaction ends. 

 

• SEQUENTIAL READ: sequential reads are initiated by either a current address read or a 

random address read. After the controller receives a data word, it respond with an 

acknowledge. As long as the EEPROM receives an acknowledge it will continue 

incrementing the data word address and serially clock out sequential data words. When the 

whole memory address limit is reached the data word address will rollover and the sequential 

read will continue. The sequential read operation is terminated when the micro controller 

respond with a NACK. 

 

A micro controller routine may be easily written based on four 

procedures (Figure 5): 

 

• WRITE_ZERO: (waveform A) drives the SDA line to ‘0’, 

drives SCL to ‘1’, then to ‘0’, then SDA to tri-state, and returns 

no value 

• WRITE_ONE: (waveform B) puts the SDA processor output in 

tri-state, captures the value of the SDA line, drives SCL to ‘1’, 

drives SCL to ‘0’, and returns the captured SDA value. 

• START: (waveform C) drives SDA to tri-state and SCL=‘1’, then 

SDA to ‘0’, then SCL to ‘0’, then SDA to tri-state, and returns no 

value 

• STOP: (waveform D) drives SDA to ‘0’, then SCL to ‘1’, then 

SDA to tri-state, and returns no value 

 

In this case every transaction starts and end with SCL and SDA in ‘1’; within a transaction, each 

bit period starts and ends with SCL=’0’ and SDA=tri-state. 

 

Today, the size of higher density EEPROM serial memories with I
2
C interface is around 1 Mbit 

(e.g. Atmel AT24C1024); a device of this size can be used to store the configuration file for any 

FLEX6000 devices, FLEX10K devices ranging from 10K10 to 10K70, ACEX1K devices from 
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EP1K10 to EP1K50, and APEX devices from EP20K30E to EP20K100/100E; lower size 

memories (e.g. the Microchip 24LC128, with 128 Kbits), can be used for the ALTERA smaller 

devices such as EP1K10 or FLEX10K10. 

 

However, I
2
C memories are not the only alternative. If other interfaces are considered, many 

other choices exist. As an example, ST Microelectronics has announced serial FLASH 

memories with up to 8 Mbits; these devices, controlled through an SPI interface, can be also 

easily interfaced to a CPLD. 

 

 

6. The proposed circuit 
 

Figure 6 shows an 

hypothetical circuit using an 

I
2
C serial EEPROM, showing 

that only one pull-up has been 

added to the standard 

configuration circuit required 

for CPLDs. The only point to 

note is that the EEPROM and 

the CPLD use different 

clocks (DCLK and SCL), 

because during the ACK 

reception and EEPROM 

address settings, SCL must 

pulse and DCLK must remain 

quiet. 

 

 

Figure 6 shows also the five procedures now required to manage the configuration process: 

• A. WR_0: the EEPROM is written with a zero, but DCLK remains unchanged 

• B. WR_1/READ_ACK: used to write a one on the EEPROM or to read the ACK from the 

EEPROM, DCLK remains unchanged, on the rising edge captures and then returns the SDA 

value 

• C. RD: used to read one bit from the EEPROM and to input this bit on the CPLD, returns the 

nSTATUS value 

• D. START: issues a START condition on the EEPROM, and DCLK remains in zero. 

• E. STOP: issues a STOP condition on the EEPROM, returning DCLK to zero 

 

In the case of SPI/Microwire memories, Data Input (DI) and Data output (DO)  use different 

lines, therefore the interface requires one additional micro controller pin. However, 

configuration may be faster since no ACK pulses are generated by the EEPROM. 

 

 

7. Pseudo code of the configuration procedure 
 

The configuration process may be described using the previous five procedures, as follows. The  

time delays are for the worst case and may be smaller, since they run concurrently with other 

procedures. 
 

----------------------------------------------------------------------- 
-- the CPLD configuration process is triggered 
 
nCONFIG = 0; wait until nSTATUS=0; wait for 8 us; 
nCONFIG = 1; wait for 40 us until nSTATUS=1; 
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if (nSTATUS=0 OR CONF_DONE=1) abort(); 
wait for 40 us; 
 
----------------------------------------------------------------------- 
-- EEPROM address setting. It starts with a dummy byte write 
 
start(); 
wr_1(); wr_0();wr_1(); repeat 5 wr_0(); -- control byte B”10100000” 
if wr_1() /= 0 abort(); -- check ack 
repeat 8 wr_0(); -- high address byte 
if wr_1() /= 0 abort(); -- check ack 
repeat 8 wr_0(); -- low address byte 
if wr_1() /= 0 abort(); -- check ack 
 
-- byte write is aborted with a new START, and a sequential read starts 
 
start();  
wr_1(); wr_0();wr_1(); repeat 4 wr_0(); wr_1();-- control byte B”10100001” 
if wr_1() /= 0 abort(); -- check ack 
 
----------------------------------------------------------------------- 
-- data read from the EEPROM is clocked in the CPLD, one byte at a time 
-- the process continue until the CPLD puts CONF_DONE high 
-- this WHILE loop is repeated tens to hundreds thousand times!!! 
-- it’s the critical part to be optimized to reduce configuration time 
 
while CONF_DONE=0 loop begin 
  repeat 8 if rd()=0 abort(); -- check nSTATUS changes 
  if wr_1() /= 0 abort(); -- check ack 
  end; 
 
----------------------------------------------------------------------- 
-- 40 additional CPLD clocks are issued to complete configuration 
 
repeat 40 if rd()=0 abort(); -- check nSTATUS changes 
stop(); 

 

 

8. Conclusions 
 

Configuration of SRAM based ALTERA devices can be easily done by a microcontroller using 

the PS mode, and sharing many lines with other serial devices. In fact, only three lines 

(nCONFIG, CONF_DONE and nSTATUS) are exclusively devoted to the configuration 

process. The availability of low cost micro controllers makes this configuration method a valid 

alternative to configuration memories. 
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