
IX Worshop IBERCHIP. IBERCHIP, La Habana, 2003.

Adapting an IP MC6805 core
for multiprocessing and
multitasking.

Jaquenod, Guillermo Adolfo, Villagarcía, Horacio, Bría, Oscar
y De Giusti, Marisa Raquel.

Cita:
Jaquenod, Guillermo Adolfo, Villagarcía, Horacio, Bría, Oscar y De Giusti,
Marisa Raquel (Marzo, 2003). Adapting an IP MC6805 core for
multiprocessing and multitasking. IX Worshop IBERCHIP. IBERCHIP, La
Habana.

Dirección estable: https://www.aacademica.org/marisa.de.giusti/3

ARK: https://n2t.net/ark:/13683/ptyc/C7g

Esta obra está bajo una licencia de Creative Commons.
Para ver una copia de esta licencia, visite
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es.

Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso
abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su
producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite:
https://www.aacademica.org.

https://www.aacademica.org/marisa.de.giusti/3
https://n2t.net/ark:/13683/ptyc/C7g
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es


ADAPTING AN IP MC6805 CORE FOR MULTIPROCESSING AND 

MULTITASKING 
 

 

Guillermo A. JAQUENOD 
Fac. Ingeniería, UNCPBA, ARGENTINA. 

chipi@netverk.com.ar 

 

Horacio A. VILLAGARCÍA 
CICPBA – Fac. Informática, UNLP, ARGENTINA. 

hvw@info.unlp.edu.ar 
 

Oscar N. BRIA 
CONICET – Fac. Informática, UNLP, ARGENTINA. 

onb@info.unlp.edu.ar 

 

Marisa R. DE GIUSTI 
CICPBA – Fac. Informática, UNLP, ARGENTINA. 

marisadg@volta.ing.unlp.edu.ar 

 

 

 

ABSTRACT 

 

The availability of high-density field configurable devices provides the opportunity for designing  

highly integrated solutions (SOPC: System On a Programmable Chip). 

Among the SOPC solutions, a case is the integration of an embedded single processor equipped 

with a multitasking operating system. As an alternative to a single processor the embedding of various 

processors on a chip, even heterogeneous and with multitasking capacity, may be considered. 

A distinctive characteristic of a SOPC device is that the tasks to be performed are well known 

before the design starts. That feature is opposed to the traditional multiprocessing and multitasking 

systems in which general purpose applications are adopted during design. The benefit of this 

knowledge is that hardware as well as software can be adapted to fit the application’s requirements. 

This paper presents the hardware modifications performed on an microcontroller embedded core, to 

allow its inclusion as a multitasking device in a “multiprocessor on a chip”, through the addition of a 

hardware task manager (scheduler) and communication channels among processors. 

 

RESUMEN 

 

La disponibilidad de dispositivos de Lógica Programable de alta densidad de integración permite 

buscar soluciones integradas en un dispositivo SOPC (System On a Programmable Chip).  

Un tema de creciente interés son los procesadores empotrados, siendo usual un único procesador y 

un sistema operativo con capacidad de multitarea. 

Sin embargo, debe considerarse como alternativa insertar varios procesadores, no necesariamente 

idénticos, que pueden a su vez atender varias tareas. En un SOPC, como diferencia fundamental con 

los casos tradicionales de multiprocesamiento y multitarea, las tareas a realizar son conocidas antes de 

comenzar el diseño, por lo tanto hardware como software se pueden configurar a medida de la 

aplicación, combinando la velocidad propia del primero, con la versatilidad del segundo. 

Este artículo describe las modificaciones de hardware realizadas al núcleo IP (Intellectual Property) 

de un procesador, de modo de permitir la inclusión de un administrador de tareas por hardware y de 

canales de comunicación interprocesadores. 
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ABSTRACT 

 

The availability of high-density field configurable 

devices provides the opportunity for designing 

highly integrated solutions (SOPC: System On a 

Programmable Chip). 

Among the SOPC solutions, a case is the 

integration of an embedded single processor 

equipped with a multitasking operating system. As 

an alternative to a single processor the embedding of 

various processors on a chip, even heterogeneous 

and with multitasking capacity, may be considered. 

A distinctive characteristic of a SOPC device is 

that the tasks to be performed are well known before 

the design starts. That feature is opposed to the 

traditional multiprocessing and multitasking systems 

in which general purpose applications are adopted 

during design. The benefit of this knowledge is that 

hardware as well as software can be adapted to fit the 

application’s requirements. 

This paper presents the hardware modifications 

performed on an microcontroller embedded core, to 

allow its inclusion as a multitasking device in a 

“multiprocessor on a chip”, through the addition of a 

hardware task manager (scheduler) and 

communication channels among processors. 

 

 

1. INTRODUCTION 

 

The design of a computer processing system 

[8][10][12] strongly depends upon the exact 

knowledge of the characteristics of the problems to 

solve: 

•  When the tasks are unknown and diverse, the 

solution is to use a general-purpose processor, e.g., 

a personal computer. 

•  When the system will be used to compute specific 

but yet undefined tasks (e.g., image processing), it 

is worth choosing specialized processors as DSP´s 

with a large amount of memory or particular I/O 

features. 

•  When the application is totally known before 

design starts, the pertinent approach is to use the 

best adapted hardware resources, and in such a case 

even to use an ASIC (Application Specific 

Integrated Circuit). 

The System On a Chip (SOC) solution is the 

answer to the actual demand for the integration of 

full systems in small spaces, with a short time to 

market effort. The design methodologies based on 

SOC can take advantage of libraries of IP blocks that 

have been already designed and verified. Actually, 

the reusability of IP blocks allows the design of new 

SOCs attending to the space and time demands 

[6][7][9][11]. 

Moreover, in the field of programmable logic 

devices, the trend is moving towards SOPC (System 

On a Programmable Chip) alternatives. Besides, 

there is a growing interest in the literature in 

presenting IP blocks for specific functions [4] [15]. 

The leading companies are already offering some 

commercial products including a single processor, a 

real time operating system (RTOS) with multitasking 

capabilities, and a set of programmable resources: 

•  ATMEL is offering an 8-bit RISC processor 

(AVR), with suitable amount of RAM and ROM 

memory, and a 10K to 40K gates in a 

programmable block. 

•  TRISCEND is offering a 32-bit ARM7DMI, with 

internal cache memory, interfaces to external 

memory, peripheral devices (timers, UART´s, 

interrupts), and a programmable matrix with an 

equivalent complexity of 40K gates. 



•  ALTERA is offering a softcore alternative called 

NIOS [13], with configurable data bus width. A 

hardcore alternative, belonging to the Excalibur 

family, offers three ARM922T models and three 

MIPS32 4Kc models [14]. 

•  XILINX has announced a 32-bit softcore 

alternative called MicroBLAZE, which includes 

UART, timer, parallel I/O, interrupt controller, 

multimaster arbitrator, FLASH memory interface, 

and different RAM types. 

All the above solutions are based on a unique 

powerful processor, their own peripheral devices, 

and interconnection resources with a programmable 

logic array. 

As an alternative to the above-proposed single-

processor solutions, it is possible to include several 

processors [1][2] on a chip. Moreover, every 

processor can be different from each other and 

devoted to specific tasks, in an structure called 

MPOC (Multi-Processors On a Chip). 

The key difference of this approach is related to 

the knowledge of the tasks to be performed: 

•  In traditional multiprocessing / multitasking 

designs, the features of the tasks are knows ‘a 

posteriori’ because they are oriented to general-

purpose applications. 

•  Unlikely, in the MPOC design, the tasks are known 

‘a priori’, then the hardware as well as the software 

can be tuned to meet the requirements of the 

specific applications. 

This paper describes the hardware modifications 

performed into the IP core of an 8-bit MC6805 

processor, to include a hardware multitask scheduler, 

as well as interprocessor communication channels. 

 

2. THE MPOC PROPOSAL 

 

The MPOC (MultiProcessors On a Chip) proposal 

is oriented to low cost applications [5], where a 

structured methodology is suggested for the building 

of multitasking / multiprocessing applications. In this 

proposal tasks are assigned to processors according 

to the type of processes and the inter-processes 

communication rate. As a consequence, the use of 

multiple (no necessarily identical) processors can 

reduce the latencies and overheads of a 

monoprocessor RTOS: 

•  Tasks attending the same type of processes can 

reside on the same processor. With the same 

criteria, different types of tasks  can reside on 

different processors; choosing for each task the best 

suited processor. 

•  Tasks with a large rate of information interchange 

can communicate between using high bandwidth 

resources (e.g., shared memory areas or FIFO´s). 

Meanwhile, lightly coupled tasks can use simpler 

channels (e.g., serial channels, such as TLINK´s 

[16]). 

To operate in a MPOC environment, a processor 

should have the following characteristics: 

•  When attending a predefined number of known 

tasks, the hardware & software overload for task 

management and context switching has to be 

minimum. 

•  When interacting with other processors, the 

hardware required for the communication facilities 

has to be as reduced as possible. 

Based on those requirements, an MPOC can be 

seen as a hierarchical structure composed by 

processors, tasks, channels, and I/O ports. 

Figure 1 shows a schematic MPOC, as it has been 

presented in [5]. In that system several processors 

attend several tasks (some of them just one and other 

more than one), and communicate among them using 

point-to-point channels or some broadcasting 

facility. Many of the tasks can communicate with 

external world using I/O lines, while other ones are 

just internal processing tasks. 

 

As an example, consider the design of a car 

computer. In this case there are contextually different 

tasks: 

•  Related to the engine: combustion and ignition 

control, temperature control, oil pressure control, 

etc. 

•  Related to the structure: adaptive damping control, 

airbags, brakes (ABS) and traction control, etc. 
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•  Related to the comfort, navigation or others: air-

conditioned, navigation computer, audio devices, 

centralized lights control, anti-burglar alarms, etc. 

A quick analysis shows the following: 

•  The tasks related to the engine are strongly related 

among them, and the relation between these tasks 

and those of the general type is almost nonexistent. 

The tasks related to the engine require intensive 

numerical computation, that could be solved by 

DSP´s. 

•  The tasks related to the structure conforms also a 

compact block sharing common sensors and 

actuators. In this case common solutions are based 

on fuzzy logic. 

•  The general type tasks include a high amount of 

I/O bit-level operations, resources for multiple 

timers, and communication channels to peripheral 

devices. A general-purpose processor could be used 

in this case, 

 

3. ADAPTING AN IP MC6805 CORE FOR 

MULTITASKING 
 

The MC6805 is widely used in low cost applications. 

Their characteristics can be found in the technical 

manual [17], nevertheless we present its main 

aspects. 

It is a fixed-point processor, with an 8-bit data 

bus, and Von Neumann architecture. The CPU has a 

few internal registers: a variable –up to 16 bits- 

program counter (PC), an 8-bit accumulator (A), an 

8-bit index register (X), a 5-bit stack pointer (SP), 

and a 5-bit status register (CCR). Variables, 

instructions, and I/O share the 64 Kbytes address 

space, and can be referenced using ten different 

addressing modes. 

The design of a single task MC6805 processor 

using Altera’s FLEX10K devices has been presented 

in [3]. This design uses a very reduced amount of 

resources (about 500 logic elements), and has be 

taken as the starting point for this work. 

For multi-task support it is necessary to perform a 

fast context switching, saving all the variable values 

belonging to the leaving task, which will be used 

during the next instance of this task. That implies the 

saving of two resources: 

•  The private data (variables stored in RAM). 

•  The value of the processor registers. 

The protection of the private data can take 

advantage of the fact that the size of code and data 

used by each task is known ‘a priori’, before the 

synthesis of the processor core within the 

programmable device. Due to that characteristic, it is 

possible to use one common memory for all the 

tasks, assigning slices of this memory to each task, 

pointed by  constant offsets. 

Figure 2 shows the necessary changes to perform 

over the MC6805 address computation unit 

presented in [3]. The resources added are an adder 

and a constant offsets table. 

A later elaboration could be to differentiate the 

access to either RAM or ROM, generating offsets 

over different memory areas to optimize memory 

usage. That distinction should be essential when 

using external RAM/FLASH memories. Besides, this 

multiple offset scheme can also be used for the 

definition of shared areas of memory. 

For up to 16 tasks of variable code length, the 

generation of the offset table will use as much logic 

elements as the wide of the address bus plus those 

necessary for the adder. As an example, given 8 

tasks, with less than 12-bit address buses each, the 

generation of the final 15 bit address bus would 

require only 30 additional logic elements. 

The saving of the register values can be 

performed in parallel or sequential form. In the 

parallel case, each register of the original single-task 

processor is replaced by circular buffer of registers, 

one for each task. 

Figure 3 shows the hypothetical case of a 

processor attending 7 tasks, where it can be seen that 

the active register behavior is independent of which 

is the active register (selected by the multitask 

control stage).  

The circular nature of the registers buffer enables 

the switching from one task to the next one in a 

single clock cycle, with minimum time overhead. In 
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the worst case, if task 0 must be switched to task 6, 

the context switching latency could be 6 clock 

cycles. 

To save the registers A, X, CCR, SP, and a 12 bit 

PC, it is required to add 38 new logic elements for 

each additional task. 

In the sequential case,  the register saving process 

can take advantage of the fact that the MC6805 

automatically stores the registers on the stack before 

serving an interrupt request, and it reads they back 

when returning from the interrupt routine. The only 

register not preserved in that automatic saving is the 

SP, which can be stored using a circular buffer. 

Figure 4 shows the modifications made on the 

original MC6805 control state machine, where only 

one new state (s30-SCHED) was added to the 30 

previous states (s0 to s29) to make possible the 

context switch. 

The scheduler begins the switch cycle requesting 

an interrupt (marked as 1), which forces the registers 

stacking (state sequence s9, s10, s11, s12, s13). 

When the state machine reaches state s13 (marked as 

2) during a context switching, it moves to state s30 

(marked as 3) instead of s14, where an interrupt 

vector is fetch. The first action in s30 is to save the 

old SP in the circular buffer, loading it with the SP 

value of the incoming task. Concurrently, offsets are 

changed to point to the memory areas of the 

activated task. In the next cycle the state machine 

returns from interrupt (marked as 4) already in the 

new context (state sequence s16, s17, s18, s19, s20, 

s21, s8). The modification requires adding minimum 

hardware: 5 logic elements for each new task (for 

saving the stack pointer), and 5 logic elements for 

adding state s30. In this case, minimum switching 

latency is 13 clock cycles. 

 

4. COMMUNICATION CHANNELS 
 

From the MPOC point of view, a communication 

channel is a hardware object describing a link among 

processors. From the point of view of a processor, a 

channel is seen as a peripheral, that can be a serial 

transceptor, a parallel port, or any more complex 

element, such as a shared memory area, or a queuing 

buffer. 

A transaction message is sent by one task and 

received by another, and can be used for 

synchronization. The transaction can be either 

originated by the transmitter (writing new output 

data) and closed when the receptor reads it, or started 

by the receptor (requesting new input data) and 

closed when the transmitter send it. In both cases, the 

agent which triggers the transaction remains halted 

until the transaction is closed, therefore it is 

reasonable to include resources to take advantage of 

that time to process other tasks. 

Models for channel ports are presented in [5] 

including synchronization signals (rdy). As an 

example, a parallel port is the most simple hardware 

scheme for implementing task communications 

(Figure 5). The transmitter uses a register for storing 

the data and a simple state machine for 

synchronization. The receptor is implemented using 

also another small state machine. 

•  When the transmitter writes new data (ld active) 

the rdy_tx line becomes inactive, meaning that it is 

waiting, and the availability of data in the channel 

is indicated by new active. When the receptor read 

the data (rd active), the signal rdy_rx becomes 
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inactive, remaining in that state until the transmitter 

writes new data. At the same time, rd activates ack, 

which reinitializes the transmitter signals rdy_tx 

and new.  

•  The other situation is when the receptor is willing 

to read new data when it is not present (new 

inactive). In that situation the signal rdy_rx 

remains inactive until the transmitter writes new 

data. 

 

5. MULTITASKING SCHEDULER 
 

There is not any predefined scheduler, because it 

architecture depends on several items: the tasks 

priority, the interrupts management, the existence or 

not of a front-end interrupt processor, and other 

conditions. 

The simplest case is a multitasking system with 

equal priority tasks, using a “round-robin” arbitration 

scheme (Figure 6). In this case, the schedule of a 

new task may have several causes:  

•  The active task has triggered a communication 

transaction, then passing to idle until that 

transaction is closed. 

•  The slice time available for the active task is 

already exhausted and another task is awaiting.  

•  An external interrupt is demanding attention, and 

the scheduler is assigning the CPU to the 

corresponding task. 

In any case, the scheduler interrupts the 

processor, and when in the SCHED state, it switches 

the offsets and decides the time assigned to the new 

task. 

 

6. CONCLUSIONS 
 

When an application in entirely known ‘a priori’ 

before the beginning of the design cycle, then 

hardware and software can be optimized according 

to the requirements. It has be shown that an IP core 

for a conventional processor could be easily 

extended to operate in a multiprocessing and 

multitasking environment., just adding a few 

hardware resources. That solution and the short 

design cycle for programmable logic devices, allow a 

minimal development time, an easy debugging, and 

short time to market. 

Supposing an 8-tasks multiprocessor where the 

addressing bus width for each task is lower than 12-

bit, then 30 logic elements are needed for the 

management of private memory areas; 45 logic 

elements are needed for the modification of the state 

machine and for the stack pointer buffer; and 50 

logic elements for the round-robin scheduler.  That 

represents a 25% increase in hardware when 

compared to the single task processor. 

That increase can be reduced: 

•  For this microcontroller core, if the private memory 

areas have the same length and equal to 2
N
, there is 

not need for the 30 logic elements required for the 

management of the low order address bits of that 

memory areas. In such a case, the 3 upper lines of 

the final address bus come directly from the arbiter, 

and the overhead is reduced to a 20%. Also, if the 

time slice is identical for each task, the hardware 

needed by the arbiter is also decreased. 

•  For more complex and powerful processors, with 
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larger address and data buses, and requiring more 

hardware resources, the logic complexity for a 

multitask operation is almost the same than that for 

the core described here. As a consequence the 

percentage of hardware assigned for that 

functionality is smaller. 
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