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EXTENDED STEINMETZ EQUATION (ESE) 
 
 
Abstract. -  A modified Steinmetz equation suitable for non-sinusoidal operation of magnetic components is 
presented. The proposed expression has coefficients that may be obtained from the original Steinmetz equation 
using analytical formulas. Moreover, the functions involved are widely used in daily work in electrical 
engineering. This leads to simple and general electrical formulas suitable for magnetic power loss estimation in 
symmetrical power converter design. Using a fitting approach, the model is later extended to cover asymmetrical 
converter magnetic component applications. 
 
Keywords. - Magnetic core losses, Steinmetz equation, power magnetic components, switching converters. 
 
 
 
 
 
 
 
 

ECUACIÓN DE STEINMETZ EXTENDIDA (ESE) 
 
 
Resumen. -  Se propone una modificación de la ecuación de Steinmetz para extender su aplicación a regímenes de 
operación no senoidales. La expresión propuesta incorpora coeficientes que pueden ser determinados a partir de la 
ecuación original de Steinmetz por medio de expresiones analíticas. Además, las funciones matemáticas 
involucradas son de uso habitual en ingeniería eléctrica. Esto permite obtener fórmulas generales, pero simples, 
aplicables al proyecto de convertidores de estructura simétrica. 
Utilizando un procedimiento de ajuste empírico, el modelo es luego ampliado para servir en proyectos de 
componentes para convertidores asimétricos. 
 
Palabras clave. - Pérdidas magnéticas, ecuación de Steinmetz, componentes magnéticos de potencia, 
convertidores conmutados. 
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PART  I 
 
 
 
 

EXTENDED STEINMETZ EQUATION PRINCIPLES AND 
FORMULATION 
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I - 1. INTRODUCTION 
 
 Magnetic losses may be considered due to the hysteresis phenomenon and eddy current circulation inside 
the core. 
 For sinusoidal waveforms, the hysteresis losses may be obtained from an empirical expression due to the 
work of C. P. Steinmetz: 

ς
mh

H
v Bfk

Vol
Pp

H
==       (1.1.a) 

where hk and ς are constant to be experimentally determined, while Bm is the maximum of the induction. 
 On the other hand, the eddy current losses are given by: 

  221
me

E
v Bfk

Vol
P

p
E ρ

==       (1.1.b) 

where ρ is the core material resistivity. 
In order to take account of the anomalous eddy current losses due to a non-homogeneous current 

distribution (eddy currents), the resistivity may be assumed to be frequency dependent. 
  Thus, an approximative formula giving the total losses results: 
 

( )
221

m
f

emhv BfkBfk
Vol
Pp

ρ
ς +==      (1.1.c) 

To simplify the parameter extraction from experimental data, the above equation may be reduced to: 
 

βα
msv Bfk

Vol
Pp ==        (1.2) 

where sk , α , and β are constants to be determined from experimental data. 
 

This last expression is usually known as Steinmetz equation. 
Unfortunately, in power electronics most of the waveforms are not sinusoidal and eq. 1.2 is no longer 

valid. 
For non-sinusoidal waveforms the eddy current losses may be expressed as [1]: 

( )

2
1
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⎠

⎞
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⎝

⎛
=

•
rms

f
EEv Bkp
ρ

       (1.3.a) 

while, for symmetrical waveforms without minor loops, the hysteresis losses remain expressed as function of the 
induction amplitude mBB 2=Δ , as: 

ς

⎟
⎠
⎞

⎜
⎝
⎛ Δ=

2
Bfkp HvH        (1.3.b). 

 
 
Therefore, the total losses can be expressed as: 

( )

2
1
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⎛
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•
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f
EHv BkBfkp
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ς
     (1.3.c). 

A simplification similar to what was done with eq. 1.c may be introduced in order to transform the eq. 
1.3.c into a single product: 

ζχ
ν
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⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Δ=

•
rmsGv BBfkp

2
      (1.4) 

This equation is consistent with the classical Steinmetz expression, provided that appropriate values are 
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assigned to the constants Gk , ν , χ ,and ζ to force eq. 1.4 becoming equal to eq. 1.2 for sinusoidal 
waveforms . 

However, expression 1.4 has still an important drawback for cases other than pure sinusoids: A single 
frequency has to be adopted to do calculations. 

 
To overcome this limitation, an equivalent frequency is defined as: 

B

B
dt

dt
dB

TB
f avT
eq Δ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

=

•

∫ 2
11

2
1

0
      (1.5) 

(for pure sinewaves eq. 1.5 yields ffeq = ). 
Substituting 1.5 into 1.4 yields: 
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where, 
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•
        (1.6.b) 

dt
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dB

T
B

T

av
∫=

•

0

1
         (1.6.c) 

minmax BBB −=Δ          (1.6.d) 
for symmetrical waveforms it is mBB 2=Δ , where Bm  is the amplitude of  B(t) . 
 

Equation 1.6.a is a Steinmetz-like expression generalized for non-sinusoidal operation, dependent on 
dB/dt, but expressing it by means of analytical functions of B. 
 For sinusoidal waveforms eq. 1.6.a must match the classical Steinmetz equation 1.2. 
 

Therefore: 

( ) εγ
π 42ms kk =         (1.7.a) 

εγα +=           (1.7.b) 
εξγβ ++=          (1.7.c) 

 
 From eqs. 1.7 the following expression results: 
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v    (1.8). 

 
 Eq. 1.8 will be named the Extended Steinmetz Equation (ESE) . It includes a parameter ε , which 
modifies the rise of the plotted function (loss vs. duty cycle). This parameter should be determined looking for the 
best fit with experimental data. 
 Another modified Steinmetz equation, the iGSE [2][3] proved to match the measured experimental values 
well, so the ESE will be compared against the iGSE when experimental values are not available. 
 
 In Fig. 1.1 , the ESE is compared with results obtained from the iGSE , for a triangular waveform with 
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variable duty cycle D , using a ferrite core made of 3C85 material [2]. For this material, the best ε  value is 0.9 , 
which gives the best agreement with the iGSE. 
 For others materials, the optimal ε varies. 
 It is found that the optimal ε  does not depend on β nor ks , but it is affected by α .  

As α usually ranges from 1.1 to 1.7 ,  a linear function is proposed for ε : 
αε εε 21 kk +=      (1.9). 

 For 7.11.1 ≤≤ α a good match with the iGSE (and also with experimental data) is obtained adopting: 
αε 86.02 −=      (1.10). 

Figures 1.2 to 1.4 show how the ESE matches the iGSE results for different sets of Steinmetz parameters (using 
the ε given by eq. 1.10). 
 In order to test the agreement with the iGSE , two sinusoidal waveforms with different frequencies are 
utilized [3]. So, the induction is, 

( ) ( )[ ]tctcBB mt ωω 3sin1sin −+=      (1.11). 
The obtained results are plotted in Fig. 1.5 , as function of c , which is the amplitude proportion of each 

sinusoidal component.  
 Notice that a very good agreement with the GSE [2] is found when the minor loops effect is not 
considered. (This calls for some way of considering multiple minor loops using the ESE). 
 As a great variety of converters have no minor loops during normal operation, in the next section 
the ESE will be applied to symmetrical converters assuming no minor loops exist. 

 
Fig. 1.1 : Plot of ESE with different ε values, compared vs. iGSE. 
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Fig. 1.2 : Plot of ESE and iGSE with triangular waveform for material N27. 

Fig. 1.3 : Plot of ESE and iGSE with triangular waveform for material 3C85. 
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Fig. 1.4 : Plot of ESE and iGSE with triangular waveform for material 3C85 using the set of Steinmetz 
parameters for 200 kHz (even with 20 kHz). 

Fig. 1.5 : Plot of ESE and iGSE with two sinusoidal waveforms for material 3C85 . 
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I - 2. APPLICATION OF THE ESE TO SYMMETRICAL CONVERTERS  
 
I - 2.1 Principles 
 

Adopting the value of the parameter given by eq. 1.10 , the ESE may be expressed as: 
 

( )

( ) ( ) αβαα
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 Considering: 
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      (1.13) 

 

where 
Vff is the shape factor of the applied voltage, the ESE may be rearranged yielding: 

( )
( )( )

αβα
α

α

−•
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⎝
⎛ Δ

⎟⎟
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Vol
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where: 

Fe

rms
rms

Sn
V

B =
•

       (1.15) 

 
Dividing eq. 1.14 by the Steinmetz equation (2) (assuming mBB 2=Δ ) and substituting eq. 1.15 one 

obtains: 

( )
( )( ) α

αα
α

α
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−
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⎝
⎛ Δ
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f
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f

Stmv

v
V 2863.4

234.1 286.0    (1.16) 

 
For unipolar voltages waveforms (see examples in Fig. 1.6): 

 

( )
Fe

avT
t

Fe Snf
V

dtv
Sn

B
2

1 2/

0
==Δ ∫      (1.17) 

 
then, substituting eq. 1.17 into eq. 1.16 and using definition 13 yields: 
 

( ) ( )( )286.182254.0234.1 −= αα
Vf

Stmv

v f
p

p
     (1.18). 

 
 Notice that to obtain vp no assumptions were made neither on the type of converter nor in its 
waveforms, except for the unipolar waveform feature required. 
 For a typical 3.1=α a square wave converter yields 957.0=Stmvv pp . 
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 A rectangular wave inverter having a sinusoidal equivalent wave shape factor of 11.1=Vff (duty = 

0.812) gives 19996.0 ≅=Stmvv pp . For a duty-cycle of 0.25 one obtains 28.1=Stmvv pp , but this is a 

quite small duty for typical nominal power operation. 
 Next, an example of  application to a complex output waveform converter is presented. 
 
I - 2.2  Example: 
 
Unipolar PWM Sine Wave  Inverter 
 
 For an inverter using unipolar PWM sine wave synthesis (as shown in Fig. 1.7), the average transformer 
voltage must be: 

( ) tVdV mtP ωsin=      (E1.1) 
 

where d(t) is the duty cycle required to produce the sinusoidal average value of the output signal. So, 

( ) t
V
V

d
P

m
t ωsin=      (E1.2). 

 If Pm VV = the rms voltage applied to the transformer becomes: 
 

( ) P
T

P
T

tPrms Vdtt
T

VdtdV
T

V
π

ω 2sin22 2/

0

2/

0
2 === ∫∫   (E1.3) 

 
and the average rectified value results: 
 

( ) P
T

tPav VdtdV
T

V
π
22 2/

0
== ∫       (E1.4). 

 Therefore, the voltage shape factor is: 2533.1
2
==

π
Vff . From eq. 18, for 3.1=α  this yields: 

10.1=
Stmvv pp     (E1.5) 

 
 A 10% of increase over the magnetic losses obtained from the classical Steinmetz equation should be 
expected in a transformer used for this application. 
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Fig. 1.6 : Examples of unipolar waveforms, (a) rectangular wave inverter, (b) cycloconverter, (c) multilevel 
inverter. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1.7 : Unipolar PWM waveforms (local average values in dashed lines). 
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I - 3. CORRECTION FOR MULTIPLE LOOP CONSIDERATION 
 
I - 3.1 Principles 
 

 If only the maximum loop amplitude minmax BBBm −=Δ is considered, when multiple loops appear, 
the ESE gives results higher than the experimental ones. 
 To overcome this problem, the flux waveform is separated in individual loops without including inner 
loops, following the procedure introduced in [3]. Thus, the calculated losses for each separate loop are added 
weighting its contributions using the proportion of time spent by each separate loop. 
 An algorithm implemented as MATLAB function is presented. It works with sampled data entered as a 
vector file. 
 The shape of the minor loops depends on the sequence in which they are separated, but the total losses 
must be the same regardless the algorithm used. 
 In order to show that the total loss calculation does not depend on the method of minor loop separation 
two alternatives are presented: In case of multiple maximum, the first algorithm takes the first maximum found as 
boundary for the rising part of the whole loop, while the remaining section of the loop is considered as the falling 
part. The other alternative takes the last maximum encountered as rising part limit and the remaining is assumed 
to be the fall part. 
 Results show that even if the minor loop computed losses are different, the total losses obtained are the 
same. 
 In order to test the proposed model, its predictions are compared against the iGSE and experimental data. 
As in the former case (without minor loop correction) the agreement with the iGSE results are quite good (both 
curves practically coincide). 
 Fig. 1.8 presents the flow chart of the basic function used for minor loop separation. The MATLAB code 
is included as appendix.  
 
I - 3.2 Test against iGSE and experimental data 
 
 For two merged variable amplitude sinusoidal waveforms, the Fig. 1.9 shows the plot of ESE corrected 
for minor loops vs. ESE without correction and GSE (that is iGSE without considering minor loops), and also the 
experimental data and the iGSE (GSE corrected for minor loops). The ESE and GSE without correction 
practically coincide, as do the experimental values with iGSE and the corrected ESE. Meanwhile, a remarkable 
disparity between experimental values and uncorrected ESE (and GSE) arises when multiple loops appear as c 
increases. 
 Fig. 1.10 shows the results obtained when using both algorithm alternatives above mentioned. Notice the 
curves practically coincide. 
 On the other hand, Fig. 1.11 presents the comparison between ESE (correcting for minor loops), ESE 
without minor loops correction and experimental values, when applying fixed-amplitude merged sine waves, 
while phase between the component waves is varied. 
 
I - 3.3 Bipolar PWM Sine Wave Inverter 
 
 In bipolar PWM there are multiple voltage commutations, each one corresponding to an inflexion point of 
the magnetizing current iMI (see Fig. 1.12) and so also to an inflection point of the induction iB . 

 In Fig. 1.13 a switching cycle is detailed. There, the major loop passes through points 2, 3, 5, and 6, while 
points 3, 4, and 5 form a minor loop. 

The major loop might be produced by a voltage waveform having a voltage +VP during
eqPtΔ and  0 V 

during
eqZtΔ . 

Therefore, for this equivalent voltage waveform the shape factor will be the same obtained for unipolar 
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PWM (that is, 2533.1
2
==

π
Vff  ), so the major loop will have losses increased with respect the case of 

sinusoidal driving by a factor: 10.1=
Stmvv pp , as stated by eq. E1.5 . 

To compute the total losses, the minor loop losses have to be calculated in order to be added to the major 
loop ones. 

From Fig. 1.13 one obtains: 

   
FeP

P

n

j

Sn
V

t
B

dt
dB

j

=
Δ

Δ
=      (1.19) 

   
jeq nZ tt Δ=Δ 2       (1.20). 

As the derivative of the induction is a square wave, it follows that: 

  
FeP

P

n

j

av
rms

Sn
V

t
B

dt
dBBB

j

=
Δ

Δ
===

••
    (1.21). 

Substituting these values into the ESE expression (eq. 1.12) and weighting the minor loop loss 
contribution by its time duration yields: 

T

tB
t
B

kp j

j
jML

nj

n

j
mV

Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Δ

Δ
=

− 2

2

αβα

      (1.22) 

where,  

 
( ) sm kk α863.4

234.1
=         (1.23) 

and T = 1/f  is the period of sinewave to be synthesized. 
 Substituting eq. 1.21 into eq. 1.22 gives: 

   112 +−+− Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= αβ

β
βα

jML n
FeP

P
mjV t

Sn
V

fkp    (1.24). 

 From Fig. 1.13, it may be seen that in order to synthesize a sinewave we must have: 
  ( ) ( ) SWjPnPnSWP TtVtVtTV

jj
ωsin=Δ−Δ−     (1.25). 

 From eq. 1.25 : 

   ( )j
SW

n t
T

t
j

ωsin1
2

−=Δ       (1.26). 

Substituting eq. 1.26 into eq. 1.24 gives: 

 ( ) ( ) 1
1

2 sin12 +−
+−

− −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= αβ

β

αβ
βα ω j

FeP

P

SW
mjV t

Sn
V

f
fkp

ML
   (1.27). 

 This expression is valid for the minor loops belonging to the rise part of induction wave; thus it will be 
valid for computing the minor loops losses during half of the induction wave cycle. 
 Due to the symmetry of the induction waveform, the total minor loop losses will be twice the value of the 
rising part ones. Therefore: 

 
jMLjMLjMLML V

n

j
V

n

j
VV pnp

n
npp =⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
== ∑∑

==

2

1

2

1

22    (1.28) 

where n is the number of minor loops per cycle of the synthesized sinewave: 
    ffn SW=        (1.29). 
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 As ff SW >> the discrete average may be approximated by the integral average and using eq. 1.29 it 
results: 

 ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫ +−−− θθ

π
π αβ

β
βαβα d

Sn
V

fkp
FeP

P
SWmVML

2

0
12 sin122   (1.30). 

 The integral between brackets should be calculated numerically but for 315.1 ≤+−≤ αβ it may be 
approximated with less than 0.6 % of error by: 

 ( )
( ) 75.0

2

0
1

1
38.0sin12
+−

≅⎟
⎠
⎞

⎜
⎝
⎛ −= ∫ +−

αβ
θθ

π
π αβ dS      (1.31). 

 Usually 21 ≅+−αβ and the integral approaches the value 0.23. 
 Substituting eqs. 1.23 and 1.31 into eq. 1.30 yields: 

  ( ) ( ) S
Sn

V
fkp

FeP

P
SWsVML

β
βααβ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −8225.025.0234.1   (1.32). 

 Dividing eq. 1.32 by the Steinmetz’s equation: 

  
( ) ( ) S

BSn
V

ffp
p

mFeP

P

SWV

V

Stm

ML
β

αβ

αβ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−
8225.025.0234.1    (1.33) 

where, 

  
2

2/SW
m

T
Sm

B
BB

Δ
+=        (1.34) 

is the maximum induction value, mSB is the peak value of the sinusoidal local average induction, and 

2/SWTBΔ is the amplitude of the alternative high frequency component of  the induction, when it reaches it 

maximum value. This happens each time the primary local average voltage crosses through zero. Therefore, the 
duty cycle must be 1/2, which yields: 

   
FePSW

P
T Snf

VB
SW 22/ =Δ      (1.35). 

 Assuming a primary peak voltage for the synthesized sinewave equal to VP , from Faraday’s law one 
obtains: 
   mSFePP BSnfV π2=       (1.36). 

 Substituting eqs. 1.34, 1.35 and 1.36 into eq. 1.33 yields: 

 
( ) ( ) S

f
f

f
ffp

p

SW

SW

SWV

V

Stm

ML

β

αβ

αβ

π ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

− 21

48225.025.0234.1     (1.37). 

 Assuming ff
SW

>>  the eq. 1.37 becomes: 

   
( ) ( ) ( ) Sf

ffp
p

SWV

V

Stm

ML β
αβ

αβ
π28225.025.0234.1

−
=  

which may be rearranged as: 

  ( )
( )

S
ff

f
p
p

SWV

V

Stm

ML
αβ

αβ
α π

−

−

⎟
⎠
⎞

⎜
⎝
⎛=

1

2
8225.0234.1     (1.38). 
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 Also, using eqs. 1.21, 1.35 and 1.36 one obtains the maximum value of the minor loop amplitude 
normalized to the sinusoidal induction amplitude: 

  
] ( )

SWS

SW

S

T

S

ML

f
f

B
TdtdB

B

B

B

B

mm

SW

m

π==
Δ

=
Δ 22/max    (1.39). 

 
I - 3.4   Example: Typical values. Unipolar and bipolar comparison 
 
 For typical values 3.1=α , 5.2=β , 100=ff SW  and Hzf 60= , eqs. 1.38 and 1.39 give: 

 0085.0=
Stm

ML

V

V

p
p

  and 0031.0max =
Δ

mS

ML

B

B
. 

 For the same values but 20=ff SW one obtains 0586.0=
Stm

ML

V

V

p
p

. 

 Therefore, for the most practical cases in bipolar PWM, the increase of  losses due to minor loops may be 
neglected, and only the expression obtained for unipolar PWM (eq. E1.5) may be used for design purposes. 
 Notice that the actual voltage shape factor in bipolar PWM is 1=

Vff  . Thus, a direct utilization of the 

actual voltage waveform in the eq. 1.18 (instead of the shape factor of the equivalent voltage waveform) will give 
wrong results, lower than the ones obtained from the classical Steinmetz equation. This is because, 

( ) ( )∫∫ ==
2

0

2

0

22 T
t

T
tav dtv

T
dtv

T
V  (which is only valid for unipolar waveforms), in the eq. 1.18 derivation. 

 On the other hand, substituting the actual induction vector in the ESE, without taking account of minor 
loops, yields values higher than the real ones. In such a case: 

max
max 2
2 MLSW

SW

ML

av
rms Bf

T

B

dt
dBBB Δ=

Δ
===

••
    (1.40) 

max2 MLS BBB m Δ+=Δ         (1.41). 

Substituting these values into the ESE expression (eq. 1.12) and dividing by the classical Steinmetz 
expression: 

( )
( )

α

α
α

α ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

Δ
+

=
f

f

B

Bp
p SW

ML

S
V

V

m
Stm

ML

max
2
1

12
863.4
234.1

     (1.42). 

If ff
SW

>>  then 
maxMLS BB m Δ>> , and the eq. 1.42 becomes: 

( )
( )

αα

α
α ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ Δ
≅

f
f

B

B

p
p SW

S

ML

V

V

mStm

ML max2
863.4
234.1

      (1.43). 

 Substituting eq. 1.39 into eq. 1.43 yields: 

( )
( ) ( )αα

α π 292.1234.12
863.4
234.1

=≅
Stm

ML

V

V

p
p

      (1.44). 

For a typical value of 3.1=α , eq. 1.44 gives: 722.1=
Stm

ML

V

V

p
p

, which is a value too high. 
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Fig. 1.8 : Flow chart of the function used for minor loop separation. 
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new inner minor loops found? 
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Store the minor loops encountered into the FIFO file 
array memory, in order to be checked again looking 
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Store the major loop rising part into a file array stocking the 
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single loops (without inner loops) 
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single loops (without inner loops) 
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NO 
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END 
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Fig. 1.9: Test using a sinewave adding variable third harmonic contents “c”. 

 

Fig. 1.10: Comparison of results using first maximum detection and last maximum detection in the minor loop 
separation algorithm in the test using a sinewave with variable third harmonic contents “c”. 
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Fig. 1.11: Test using two added sinewaves with c =  0.7 and variable phase. 
 

 
 

Fig. 1.12 : Bipolar PWM waveforms (local average values in dashed lines). 
 
 
 
 
 

 
〈 i(t) 〉 〈 v(t) 〉  v(t)  

i(t)  

0  

- VP 

t  

VP 
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Fig. 1.13 : Switching-cycle detail in bipolar PWM waveforms. 
 
 
 
I - 4. CONCLUSIONS 
 
1) To design the magnetic components for symmetrical converters used in SMPS the classical Steinmetz equation 
is good enough because the duty cycle at nominal output power is usually chosen to be near the theoretical 
maximum in order to maximize the utilization of power transistors. 
 
2) For the above applications the widely used adhoc criterion, adding harmonic power components to the basic 
Steinmetz equation results, is not justified for the typical duty cycles at nominal output power operation. 
 

3) For 3.1≅α eq. 1.18 yields a very simple approximate formula:
av

rms
f

v

v
V
V

f
p

p
V

Stm

=≅        (1.45). 

 
4) The fact that the classical Steinmetz is suitable for most practical cases in symmetrical converters, justifies the 
approximate expressions [4]  for maximum induction adoption: 
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6

( )jeqPtΔ
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loop 
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  ]

β

β

θ
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θ

1

2
1 ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
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Δ

=
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tot

olV
  for optimum efficiency 

 
and 

] ]
ββ

1

2
1

max ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

tot

Fe
o

dis

dis
optmm S

S
BB P  for maximum output power density. 

In these eqs. : 
  disS  : heat dissipation surface 

θΔ  : temperature rise over 40 oC 

tot
Rθ : thermal resistance 

 
5) In bipolar PWM the minor loop contribution may be neglected when the carrier frequency is much higher than 
the fundamental one; only the major loop contribution is significant. 

Usually, the power losses increase from 10 to 15 % with respect to those expected in an equivalent 
sinusoidal operation (having the same maximal induction). 
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APPENDIX A 
 

MATLAB FUNCTIONS FOR MINOR LOOP SEPARATION 
 

1. Function using first maximum detection 
 
function [BSL,n]=seploop(B) 
% main routine for loop separation 
% input data : B= vector of induction, 
% output data: BSL= cell array containing separated minor loops without inner minor loops, n=number of minor loops 
% (This function calls the ancillary function : minloop) 
BML=cell(1); %BML= cell array storing minor loops to process 
BSL=cell(1); 
j=1; % counter of loops without inner loops 
k=1; % counter of loops to be checked for minor loop search 
BML{1}=B; % array of loops to be processed for minor loop extraction 
% Single loop extraction: 
while j<=k 
    Bi=BML{j}; 
    [BL,ML,m]=minloop(Bi);  % BL=vector cleaned of minor loops, ML= cell array containig minor loops extracted, 
m=number of minor loops found. 
    k=k+m; % increasing counter of loops to be processed 
    BSL{j}=BL; 
    j=j+1; 
    if m>0 
        BML=[BML ML]; % concatenation of additional loops to be checked for minor loop extraction 
    end 
end 
n=j-1; % number of minor loops 
 
--------------------------------------------------------------------------------------------------------------------------------------------------- 
 
function [BL,ML,m]=minloop(B) 
% major loop separation from minor loops 
% data input: B=induction, 
% data output: BL= vector without minor loops, ML= cell array containing minor loops for further iterative processing, 
m=number of loops extracted. 
% INPUT DATA ARRANGING: single cycle definition, rising and falling part separation 
T1=size(B); 
T=T1(1,2); % period determination 
B2T=[B B]; % input vector concatenation to obtain two cycles of data input signal 
[Bmin,jmin]=min(B2T); % determination of rising part start point 
B1T=B2T(jmin:jmin+T-1); % single cycle data extraction (1 cycle starting at start point) 
[Bmax,jmax]=max(B1T); % determ. of end of rising part 
Br=B1T(1:jmax); % rising part separation 
Bf=B1T(jmax+1:end); % falling part separation 
% RISING PART MINOR LOOP EXTRACTION: 
% variable initialization: 
m=0; % minor loop counter 
flag=1; % set ancillary bit flag 
ML=cell(1); % cell array definition and initialization 
jfin1=size(Bf); 
jfin=jfin1(1,2); % dimension of falling part 
BL(1)=Br(1); 
% rising part iterative minor loop extraction: 
for j=1:jmax-1 
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    if (flag==1) 
        if Br(j+1)>=Br(j) 
            BL=[BL Br(j+1)]; % major loop accumulation 
        else 
            BC=Br(j); % BC=temporary comparation register 
            jbc=j+1;  % minor loop starting point 
            flag=0;   % reset flag 
        end 
    end 
    if (flag==0) 
        if (Br(j+1)>BC) % minor loop end point detection 
            m=m+1; 
            ML{m}=Br(jbc:j); % minor loop accumulation 
            BL=[BL Br(j+1)]; % resume major loop accumulation 
            flag=1;  % set flag 
        end 
    end 
end 
% FALLING PART MINOR LOOP EXTRACTION(similar to rising part extraction): 
if jfin>0 
    BL=[BL Bf(1)]; % variable initialization 
    flag=1; 
% falling part iterative minor loop extraction: 
    if jfin>1 % detect if there are at least two samples in the falling part 
        for j=1:jfin-1 
            if (flag==1) 
                if Bf(j+1)<=Bf(j) 
                    BL=[BL Bf(j+1)]; 
                else 
                    BC=Bf(j); 
                    jbc=j+1; 
                    flag=0; 
                end 
            end 
            if (flag==0) 
                if (Bf(j+1)<BC) % minor loop end point detection 
                    m=m+1; 
                    ML{m}=Bf(jbc:j); % minor loop accumulation 
                    BL=[BL Bf(j+1)]; % resume major loop accumulation 
                    flag=1; 
                    else if (j==jfin-1) % end of loop detection 
                            m=m+1; 
                            ML{m}=Bf(jbc:jfin); % minor loop accumulation 
                    end 
                end 
            end 
        end 
    end 
end 
___________________________________________________________________________________________________ 
 

2. Function using last maximum detection 
 
function [BSL,n]=seploopf(B) 
% main routine for loop separation 
% input data : B= vector of induction, 
% output data: BSL= cell array containing separated minor loops without inner minor loops, n=number of minor loops 
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% (This function calls the ancillary function : minloop) 
BML=cell(1); %BML= cell array storing minor loops to process 
BSL=cell(1); 
j=1; % counter of loops without inner loops 
k=1; % counter of loops to be checked for minor loop search 
BML{1}=B; % array of loops to be processed for minor loop extraction 
% Single loop extraction: 
while j<=k 
    Bi=BML{j}; 
    [BL,ML,m]=minloopf(Bi);  % BL=vector cleaned of minor loops, ML= cell array containig minor loops extracted, 
m=number of minor loops found. 
    k=k+m; % increasing counter of loops to be processed 
    BSL{j}=BL; 
    j=j+1; 
    if m>0 
        BML=[BML ML]; % concatenation of additional loops to be checked for minor loop extraction 
    end 
end 
n=j-1; % number of minor loops 
 
--------------------------------------------------------------------------------------------------------------------------------------------------- 
 
function [BL,ML,m]=minloopf(B) 
% major loop separation from minor loops 
% data input: B=induction, 
% data output: BL= vector without minor loops, ML= cell array containing minor loops for further iterative processing, 
m=number of loops extracted. 
% INPUT DATA ARRANGING: single cycle definition, rising and falling part separation 
T1=size(B); 
T=T1(1,2); % period determination 
B2T=[B B]; % input vector concatenation to obtain two cycles of data input signal 
[Bmin,jmin]=min(B2T); % determination of rising part start point 
B1T=B2T(jmin:jmin+T-1); % single cycle data extraction (1 cycle starting at start point) 
BX=fliplr(B1T);% invert B1T to obtain the last maximum 
[Bmax,jx]=max(BX); % last maximum detection 
jmax= T+1-jx; % determ. of end of rising part 
Br=B1T(1:jmax); % rising part separation 
Bf=B1T(jmax+1:end); % falling part separation 
% RISING PART MINOR LOOP EXTRACTION: 
% variable initialization: 
m=0; % minor loop counter 
flag=1; % set ancillary bit flag 
ML=cell(1); % cell array definition and initialization 
jfin1=size(Bf); 
jfin=jfin1(1,2); % dimension of falling part 
BL(1)=Br(1); 
% rising part iterative minor loop extraction: 
for j=1:jmax-1 
    if (flag==1) 
        if Br(j+1)>=Br(j) 
            BL=[BL Br(j+1)]; % major loop accumulation 
        else 
            BC=Br(j); % BC=temporary comparation register 
            jbc=j+1;  % minor loop starting point 
            flag=0;   % reset flag 
        end 
    end 
    if (flag==0) 
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        if (Br(j+1)>BC) % minor loop end point detection 
            m=m+1; 
            ML{m}=Br(jbc:j); % minor loop accumulation 
            BL=[BL Br(j+1)]; % resume major loop accumulation 
            flag=1;  % set flag 
            else if (j==jmax-1) % end of minor loop detection 
                     m=m+1; 
                     ML{m}=Br(jbc:jmax); % minor loop accumulation 
                     flag=1;  % set flag 
            end 
        end 
    end 
end 
% FALLING PART MINOR LOOP EXTRACTION(similar to rising part extraction): 
if jfin>0 
    BL=[BL Bf(1)]; % variable initialization 
    flag=1; 
% falling part iterative minor loop extraction: 
    if jfin>1 % detect if there are at least two samples in the falling part 
        for j=1:jfin-1 
            if (flag==1) 
                if Bf(j+1)<=Bf(j) 
                    BL=[BL Bf(j+1)]; 
                else 
                    BC=Bf(j); 
                    jbc=j+1; 
                    flag=0; 
                end 
            end 
            if (flag==0) 
                if (Bf(j+1)<BC) % minor loop end point detection 
                    m=m+1; 
                    ML{m}=Bf(jbc:j); % minor loop accumulation 
                    BL=[BL Bf(j+1)]; % resume major loop accumulation 
                    flag=1; 
                    else if (j==jfin-1) % end of loop detection 
                            m=m+1; 
                            ML{m}=Bf(jbc:jfin); % minor loop accumulation 
                    end 
                end 
            end 
        end 
    end 
end 
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PART II 
 
 

CONSIDERING DC-BIAS EFFECTS ON MAGNETIC LOSSES WITH 
THE EXTENDED STEINMETZ EQUATION (ESE) 
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II - CONSIDERING DC-BIAS EFFECTS ON MAGNETIC LOSSES WITH 
THE EXTENDED STEINMETZ EQUATION (ESE) 

 
II - 1. MODEL DEVELOPMENT 

 

II - 1.1 Modeling principles 
 
 In [1], in order to take account of the dc bias, the losses obtained from the Steinmetz equation are 
increased multiplying by a factor : 

2
11 K

B

DC

AC

eBKM
−

+=      (2.1) 

where DCB and ACB relate to the constant and the alternating part of the induction, while 1K and 2K  must 
be determined from measurements. 
 Because the dc bias influence becomes stronger as the saturation level is approached, normalization to 
this level should be introduced. In addition, experimental curves show that the dc bias influence is not linear, so 
better fitting with experimental data would be obtained by affecting the bias induction by an exponent.  

Therefore, the former model may be modified multiplying the ESE by a factor: 
 

SATB
B

SAT

DC e
B
B

M
2

1
Δ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

ξν

κ     (2.2) 

where, 
BΔ  is the equivalent amplitude of the induction to be introduced in ESE, given by the algorithm 

taking account for multiple minor loops influence (deducting the DC bias), 
 DCB  is the dc bias induction, 

SATB    is the saturation induction, 
 ξνκ ,,   are constants depending on the ferrite material. 
 
 The constant ν seems not having a critical value and good fitting for different materials is obtained 
adopting 6.1=ν . 
 From experimental values, the constant ξ might be expressed as: 

    ( )216 κξ =       (2.3) 
 Experimental work has to be done in order to prove this relation and to determine if some relation exist 
between these constants and the Steinmetz equation parameters. 
 

II - 1.2 Comparison against experimental results 
 
 The modified version of ESE, considering the M factor, is compared against experimental data from [2] to 
test its fitting capabilities. 
 Fig. 2.1 shows the ESE results obtained for a biased sine wave applied to a core made of 3F3 ferrite, 
while Fig.2.2 shows curves for N27 material. 
 The sine wave frequency used in Figs 2.1 and 2.2 was 20kHz [2]. 
 Fig. 2.3 shows the frequency related variation of losses depending upon dc bias and ac driving. The 
deviation from the experimental results presented in [2] is probably due to a mismatch between the real physical 
law of losses and the approximative Steinmetz expression (because unavoidable differences arise even at zero 
biasing level). 
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II - 2. SIMPLIFIED MODELS 

 
 The exponential function in eq. 2.2 would complicate the application to asymmetrical converters. 
Moreover, a model including fewer parameters should be preferable. 
 Therefore, the exponential term is roughly substituted by a linear function yielding: 
 

⎟⎟
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⎝

⎛ Δ
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SATSAT

DC
dc B

B
B
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KM 11    (2.4). 

 
 The constants dcK , Λ and Ξ are determined by looking for the best fitting with experimental values. 
 The Figs. 2.4 and 2.5 show acceptable agreement between the above used experimental values and the 
new results from the proposed simplified model. For the different materials considered, acceptable experimental 
data matching is achieved adopting 2=Λ  and 1=Ξ , while dcK depends on the material type and must be 
determined looking for the best experimental curve matching. 
 Substituting for the constant values in eq. 2.4 , one obtains : 
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   (2.5). 

 
 The problem with this model is that one may expect that the amplitude of the ac component could be of 
the same order of the saturation level when the dc component is small, and in such a case a value of M lower than 
one will result, which would be incorrect. 
 To overcome this problem another approximation to the exponential function is used, leading to the 
model: 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 2

21

11

SAT

SAT

DC

B
BB

B
M

ζ

κ
ν

   (2.6). 

 
 In this model, the constants νκ , are the same as in the first model (using the exponential function), 

while ζ has to be found experimentally. For the materials explored, it is found that adopting 22 ξζ =  and 
using eq. 2.3 yields 

4162 ⎟
⎠
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⎝
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ζ        (2.7) 

which, substituted in eq. 2.6, gives good approximated results: 
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The curves obtained using eq. 2.8 are practically identical to those plotted in Figs. 2.1 and 2.2 . 

 The proposed models do not take account of the small loss reduction obtained when a slight dc 

bias is applied [3], nor are they valid for all ferrite set of Steinmetz parameters. In particular, for near 

zero induction operation the models do not represent even the shape of the losses’ curves [3]. 

 The simplest model has been tested using experimental data from two materials having quite different 
parameters[2]. Even though the agreement is good, further experimental verification should be done. 
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Fig. 2.1 : Loss density ESE plot considering dc bias, for a 3F3 ferrite made core. 

 

Fig. 2.2 : Loss density ESE plot considering dc bias, for a N27 ferrite made core. 
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Fig. 2.4 : Loss density ESE plot considering dc bias, for a 3F3 ferrite made core, using the linear simplified 

model. 

 
Fig. 2.5 : Loss density ESE plot considering dc bias, for a 3F3 ferrite made core, using the linear simplified 

model. 
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II - 3. Example: 

 
Application to a flyback converter operating in continuous mode 
 

The characteristic waveforms are shown in Fig. 2.6. 
Considering the dc bias the ESE may expressed as: 

( ) ( )( ) Mf
p

p
V

Stm
f

v

v 286.182254.0234.1 −= αα     (2.9) 

where 
Vff is the shape factor of  the primary voltage and M is the dc bias loss multiplication factor previously 

defined. 

 In continuous mode,  P
S

P
S V

D
D

n
n

V
−

=
1

, then: 

( )DDV
V

f
avP

rmsP
f V −

==
12
1

      (2.10) 

 
On the other hand, from the Ampère law: 

( ) ( ) ( )
ero

Fe
ttPPt

l
Binmmf

μμ
==       (2.11) 

which yields, 

 
ero

Fe
mPP

l
BInmmf

μμ
== maxmax       (2.12) 

 ( )
ee ro

Fe
DC

ro

Fe
avPP

P
av

l
B

l
BII

n
mmf

μμμμ
==+= minmax2

  (2.13) 

 
ero

Fe
PP

l
BInmmf

μμ
Δ=Δ=Δ       (2.14) 

 From eqs. 2.12 and 2.14, one obtains: 

 i
P

P

m I
I

B
B δ=

Δ
=

Δ

max
        (2.15) 

where iδ is a parameter used in converter design [4]. 
 Therefore: 

SAT

m
i

SAT

m

mSAT B
B

B
B

B
B

B
B δ=Δ

=
Δ

      (2.16) 

In similar way, from eqs. 2.12 and 2.13 we can obtain: 
 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

2
1 i

m

DC
B

B δ
        (2.17) 

and then, 

 
SAT

mi

SAT

m

m

DC

SAT

DC

B
B

B
B

B
B

B
B

⎟
⎠

⎞
⎜
⎝

⎛ −==
2

1
δ

     (2.18). 

 
 Substituting eqs. 2.16 and 2.18 into 2.2 yields: 
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Substituting eqs. 2.10 and 2.19 into 2.9 yields: 
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Stm
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v

v e
B
B

DDp
p 2

286.1 2
11

12

82254.0234.1
δξνν

α

α δ
κ   (2.20). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.6 : Continuous operating mode flyback waveforms. 
 
 For a set of typical values D = 0.5 , α = 1.35 , Bm ≅ BSAT , δ i = 1/3 , κ = 7 , ν = 1.6 and ξ = 5 , one obtains:

1.3=
Stmv

v
p

p
, but in this expression Stmvp corresponds to losses obtained for SATi BB δ=Δ , and so is 

quite small compared to the losses in a transformer operating with mBB 2=Δ . 
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III - MEASUREMENT TECHNIQUES. PRINCIPLES 
 
 Electrical measurement methods are faster than the thermal ones. 
 Therefore, due to the big amount of measurements to be done, the core loss will be measured by electrical 
methods, based upon the basic approach introduced by Epstein (Fig. 3.1) [1]. 
 In order to calculate the power loss, a digital oscilloscope does the multiplication and integration of the 
voltage and current signals. 
 A high inductance inductor is inserted in the dc biasing circuit to reduce ac power losses in the dc circuit. 
 The switch Sdc in position 1 avoids dc current circulation through the current sense transformer, but some 
error could be introduced due to losses in the biasing circuit. In position 2 this losses are not sensed, but a dc 
current circulates through the current transformer, enabling the possibility of errors if the transformer core 
approaches the saturation limit. 
 Depending upon the dc bias and the current transformer features, one of both alternatives should be 
preferred. 
 The cores to be utilized need to have a constant section to ensure that the induction be uniform (this leads 
to discard some popular shapes widely used in power conversion). In fact, only toroids and some E cores fulfill 
this requirement. 
 The static curves of ferrites exhibit wide dispersion among different samples. So, one way to set 
accurately the dc bias induction is to prevent dc bias depending on the material characteristics. To achieve this, an 
air gap large enough, should be inserted into the magnetic circuit. This may be done adopting E cores or cutting 
toroids. 
 The other alternative is to adopt non-gapped cores, but measuring the actual static curves of the samples 
to be used in measurements. 
 In following sections, both alternatives are considered. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1 : Basic core loss measurement circuit. 
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REMARK: As the ferrite characteristics depend on the material temperature, the core samples under test 
are immersed in a bath of transformer oil heated at 100 oC. 
 
III - 1. MEASUREMENTS USING GAPPED CORES 
  
 Non-gapped E standard cores will be adopted and the air gap will be inserted in the central and 

side legs using paper. 

 If the required air gap does not match any of the ones specified in manufacturer data sheets, the effective 
permeability and inductance factor may be estimated using the formula presented in Appendix B. 
 Once the air gap is adopted, it is advisable to verify these calculated values before doing the experimental 
measurements. 
 
III - 1.1 Selection of the core volume 
 

If the air gap fulfills rea ll μ>> , the effective permeability becomes: 

ae

e

a
r

r
r ll

l
le

≅
+

=
μ

μ
μ

1
       (3.1). 

Then, adopting: ( )
min

20 ra lel μ= , one obtains: 10020
min

≅= rre μμ .  

For the ferrite material 3C85 at 100 oC, from manufacturer data it is, 2000
min

=rμ  and

4400max =rμ . 

Therefore, this yields: 
23.95min =erμ  , 78.97max =erμ  and  51.96=averμ . 

Thus, the error due to relative permeability variation during measurements could be: 

0264.0minmax =
−

=
ave

ee

r

rr
re

μ

μμ
μ , that is less than 3 %. 

Therefore, air gaps yielding effective permeabilities of 100 (or less) should be adopted in order to keep 
the error small. 

On the other hand, from the Ampère law: 

NA
SB

I
L

Fem
m =         (3.2) 

where, 

  
e

Fero
L l

S
A eμμ

=         (3.3) 

 
and from the Faraday law: 

  
fSB

V
N

Fem

P
44.4

=        (3.4). 

 Substituting eqs. 3.3 and 3.4 into eq. 3.2 yields: 

Pro

m
m V

fVolB
I

e
μμ

244.4
=        (3.5) 
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where, eFe lSVol = . 
 From eq. 3.5 one may obtains the required core volume as function of the maximum current to be 
supplied by the driving amplifier: 

fB

IV
Vol

m

mPro e
244.4

μμ
=        (3.6). 

 Considering IIm 2= , the eq. 3.6 becomes: 

fB

P
Vol

m

ampro e
2π

μμ
=         (3.7) 

 
where ampP is the required amplifier nominal output power. 
 

Examples 
 For f = 20 kHz , Bm = 0.3 T , 100=

erμ and WPamp 250= , it results: 3mm5555=Vol . 

The core E42/21/15 has a volume of 17300 mm3 , so it is too big for the amplifier power available. This 
may be also verified using eqs. 3.2 and 3.4: 
 
1. From eq. 3.4 : 2109.21 ≅=N . 
 

2. From manufacturer data one may adopt 110=erμ which yields nH250=LA . Then, adopting VP = 100 V , 

eq. 3.2 yields: AA
NA

SB
I

L

Fem
m 17.10

2110250
101783.0

9

6
=

×

×
==

−

−
. 

If an error of 5 % were acceptable, one may adopt 270=
erμ , giving nH630=LA which yields A4=mI

. 
 For  f = 100 kHz, one may raise the induction up to Bm = 0.2 T and then, from eq. 3.4 : 6326.6 ≅=N . 
Later, adopting 270=erμ the eq. 3.2 yields: A42.9=mI . 

 From results above obtained from eq. 3.7 , one possibility to measure the losses using the available 
amplifier of 250 W, might be to adopt cores EF25 (E25/13/7) having 3mm2990=Vol . 
 This was the core size adopted to do the experimental measurements.  
 
III - 1.2 Minimum required window filling factor 
 

The rms current through the windings is: 

NA
SB

I
L

Fem
rms 2

1
=           (3.8). 

 
On the other hand: 

N
S

FFFSI Fe
wcpCurms σσ ==         (3.9) 

where, 
σ  : current density 

pF  : partition factor of the window 

cF  : coil factor (or filling factor) 
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wF  : window factor , Feww SSF =  
 

Substituting eq. 3.9 into eq. 3.8 yields: 
 

pwL

m
c FFA

B
F

σ
1

2
1

min =          (3.10). 

 
Thus , the filling factor should be equal or better than the limit given by eq. 3.10 . 
For the cores E25/13/7 made with material 3C85, from manufacturer data the air gap should be 270 μm in 

order to set LA with accuracy + - 3 % . Adopting such air gap (but sharing it between the external and central 
legs), it results %1.3240 ±=LA . 

For TBm 3.0= , 2/5.4 mmA=σ , 077.1=wF , and 9.0=pF the minimum filling factor 

results: 203.0
min

=cF . This requirement may not be fulfilled using cable winding, because the window filling 

factor using cable typically ranges from 0.07 to 0.09 . 
Using other cores the situation does not change much. For example , for  E42-15 the minimum filling 

factor is 0.155 . 
For a core E55-21, adopting 2/5.4 mmA=σ  and 95.0=pF , it results 9.0

min
=cF . Then, from 

eq. 3.8 it should be AIrms 96.3= , but for this current and an environment temperature of 100 oC, it may be 
not safe to adopt such current density. (Lowering the current density will raise the minimum required filling 
factor). 

Therefore, wire windings should be used. Moreover, the amount of winding space required will not allow 
to use isolated windings for ac driving primary and dc biasing windings. 
 
III - 1.3 Instrument accuracy requirements 
 
 The averaged product of signals from channels 1 and 2 has usually an offset, which may change with the 
repetition of the measurement and with the number of averaging cycles. Also, it varies when the voltage/division 
rate is modified. 
 However, a simple way to correct for offset errors is to do two measurements (W1 and W2), inverting the 
connection of the voltage sense winding without changing the voltage/div ratios. As the offset error should remain 
the same, the expression ( ) 2/21 WWW −=  allows eliminating offset errors. 
 Unfortunately, this did not solve the accuracy problems. 
 Using a non-gapped core E25/13/7 made on material 3C85 , adopting Bm = 0.2 T and f = 25 kHz , the 
apparent power was 0.705 W , while the active power was 35 mW. That is, the ratio of the wanted average to the 
apparent instantaneous power to be averaged was FP = 0.05 (the power factor). 
 On the other hand, in the case of the gapped core, the power factor results: FP = 0.0045, so one order of 
magnitude lower. 
 Then to have a precision of %5.2± on the result, a resolution of FP/40 in the signal product is 

required, that is FP/40 = 0.0001125 , which leads to a required precision of  0106.040/ =FP for the input 
signals. As the input signals may be usually ranging on the medium voltage span (selected by the voltage/div 
control) this ask for a 0.5 % class requirement for the input channels. 
 Moreover, the signal multiplication must have a 0.0001 resolution, which implies 14 bits. Actually, for 
signals ranging on the medium voltage span, the required resolution is 0.00005. Therefore, two bytes operation 
and register are needed. 
 Increasing the core volume, or using multiple cores in parallel, will not change the situation because the 
apparent power would be increased in the same proportion (both the active power and the apparent power are 
proportional to the core volume). 
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 When using a non-gapped core the precision required becomes much lower due to the apparent power 
reduction. 

If curves corresponding to small loss operation are to be plotted, the instrument accuracy demands may be 
impossible to meet when using gapped cores [2]. 

 
III - 2. MEASUREMENTS USING NON-GAPPED CORES 
 
 In ferrites the static B-H curve matches the low frequency normal curve [3] which allows to use this 
normal curve to find the dc currents to be injected. 
 Using a non-gapped core, for a given induction Bm it will be a maximum Hm related to a peak current Im 
by the Ampère law. 
 Assuming the normal curve equal to the static one, injecting Idc = Im should produce Bdc = Bm. 
 Therefore, to find the dc current to be injected one should apply an ac voltage producing a Bm equal to 
the desired Bdc , then measure Im and so finally inject  Idc =  Im. 
 The normal curve differs from the static curve as much as the core eddy currents become important. Thus, 
to obtain a good Idc prediction, one should use a low frequency normal curve, for example at 1 kHz. 
 This may be accomplished using two sets of windings, one having more turns to find Idc and other with 
few turns to measure losses. 
 In order to avoid resonance problems while doing high frequency measurements, a set of two coil formers 
should be foresee. 
 
III - 2.1 Normal curve measurement 
 
 The core size adopted is E25/13/7 that has a volume big enough to have losses high enough to be 
measured with an accuracy of +- 9 % in worst cases. 
 The normal curves were obtained using the circuit of Fig. 3.2, with a coil former having primary and 
secondary windings of 50 turns bifilar wound. 
 All the measures were done at 100 oC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.2 : Normal curve measurement circuit. 
 
 The shunt resistor was 1 Ω  ±1 % x 10 W metal film, with a parasite inductance of 4.1 μH. 
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 To check the normal curve agreement with the static curve one may verify that the measured inductance 
does not vary with the frequency. 
 This was done for material 3C85 with Bm = 0.2 T. Results are presented in Table 3.1. 
 

TABLE 3.1:Measurements with material 3C85 
f 

[Hz] 
VP rms 
[mV] 

I rms 
[mA] 

I P - P 
[mA] 

L 
[mH] 

50 115.45 44.20 127.0 8.3135
100 230.90 44.33 129.0 8.2891
250 577.20 44.73 131.7 8.2150
500 1154.4 44.95 132.3 8.1748

1000 2308.8 44.88 132.3 8.1875
2000 4617.6 44.82 132.0 8.1985
4000 9235.2 44.80 131.8 8.2021

10000 23090.0 44.98 132.4 8.1693
20000 46176.0 44.65 131.1 8.2297

 
 A frequency of 1000Hz was adopted to obtain the normal curves because it is a frequency low enough but 
the voltages needed at lower inductions are sufficiently high to be measured without problems. 
 As the curves were obtained using 50 turns windings, the dc current to be injected with other number of 

turns ( xn ) is given by: 
2

50 PP

x
dc

I
n

I −= . 

 
III - 2.2 Twin cores measurement method 
 
 Using two equal set of cores it is possible to duplicate the active power to be measured while keeping 
separated core volume small enough to facilitate power dissipation. Thus, the internal material temperature is 
more uniform and also the thermal constant are lower, allowing shorter cooling intervals between measurements. 
Moreover, it is possible to use isolated dc bias windings connected with opposite phase, in order to prevent power 
dissipation into the dc bias circuit. 
 The schematic circuit is presented in Fig. 3.3 . Notice, that the blocking capacitor is not longer required 
(provided that both the signal generator and the power amplifier do not introduce offset). 
 In order to obtain accurate results, both cores should have well matched material characteristics. 
 Averaging the normal curves determined for each core, one obtains the equivalent static curve to be used 
for biasing purposes. 
 For example, the normal curve dispersion found for material 3F3 was 10 %, this yields ± 5 % dispersion 
regarding the average curve. 
 This lack of accuracy regarding the dc bias , may be a drawback when aiming to characterize a particular 
material sample behavior, but it would be not important if the average typical material characteristics are 
searched. 
 Looking for equal alternative induction, primary windings are connected in parallel, while secondary 
sense voltage windings are serially connected to get the average sense voltage. 
 To ensure that the alternative power, dissipated into the dc bias circuit, be negligible, the ac blocking 
inductor is retained. 
 As the accuracy achieved in power measurements with the available instruments was 9 % , an accuracy of 
5 % in dc bias induction was considered acceptable. Therefore, this method was selected to do the experimental 
measurements. 
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Fig. 3.3 : Twin cores measurement circuit. 
 
 
III - 3. MEASUREMENTS IMPROVING THE APPARENT POWER FACTOR 
 

In order to overcome the poor accuracy due to the low power factor (explained in section III-1.3), a loss-
less capacitor might be connected in parallel with primary windings. 

Vacuum, air or glass capacitors do not have enough capacity for this application and, unfortunately, the 
losses introduced by other capacitors would wreck the possible accuracy gain. 

For example, a polystyrene film capacitor exhibits a power factor of 0.0033 @ 35 Vrms, 25 kHz. Thus the 
introduced losses become as important as the power loss to be measured. 

To overcome this problem, the power factor measured will be improved rather the actual one. That is, an 
apparent power factor will be improved. 
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To do this, the current signal will be derived by means of a loss-less Rogowski transformer [4] and the 
resulting signal (properly scaled) will be subtracted from the voltage signal. By this way, the voltage component 
in quadrature with the current signal will be reduced and the measured apparent power factor will be improved. 

As only the active power will be measured, the amplitude accuracy of the derived current signal is not 
important. Only an accurate and stable 2π phase shift is mandatory to achieve good accuracy. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.4 : Principles of measurement improving the apparent power factor. 
 

Approaching saturation the current becomes distorted but the method will not introduce errors, because 
the derivative of each harmonic component of the current is phase shifted 2π , and does not contribute to the 
measured power, even if the voltage signal has multiple harmonic components. 

When the current becomes distorted by the core saturation, the voltage signal is also distorted in the same 
way, due to the series impedance, which is linear because it is formed by the leakage inductance (with air flux 
path) plus the series resistance of primary windings. Therefore, the measured power without power factor 
compensation will be: 
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measured power. Moreover, this might allow using this measurement improvement technique with non sinusoidal 
waveforms. 

The most promising feature of this method is that it might allow testing components having large air gaps. 
In order to test the derivative performance, one Rogowski transformer was assembled winding two 

Rogowski coils on the same toroidal air core. The derived current signal matched quite well the digital derivative 
done by the digital oscilloscope. 

The use of a Rogowski transformer instead of a single Rogowski coil allows overcoming the poor 
sensitivity of the single coil for small currents. Moreover, the flux is better confined inside the toroid giving both 
a more stable signal and higher noise immunity. 

Further exploration of this proposed technique will be done in future works. 
 
III - 4. CONCLUSIONS AND FUTURE WORK 
 
1. From the experimental measurements done, one may conclude that for the particular case of flyback 
converters operating in discontinuous mode at low frequency (i.e. 25 kHz) and designed for minimum core 
volume, the classical Steinmetz equation may be applied for transformer design. This is possible because in such 
cases the design is limited by saturation and also, the dc bias is usually lower than half of the maximum induction 
attained. 
 In such conditions the core losses are smaller or hardly bigger than the ones corresponding to the 
unbiased condition. Moreover, as the duty factor is usually adopted near 50 % , the non sinusoidal waveform does 
not significatively affect losses so, using ESE or iGSE might not be necessary. 
 
2. If a flyback transformer has to be optimized from the efficiency point of view (minimizing losses) the 
optimal maximum induction should be reduced [5]. In this case, the dc bias may increase the losses with respect 
to the classical Steinmetz results. 
 
3. If an asymmetrical converter has to operate at high frequency, the maximum allowable induction is 
limited by losses at values that exhibit great variations depending upon the bias adopted. In this case the dc bias 
will have a strong influence in transformer design. This will be true in the particular case of quasi-resonant 
converters, where the switching frequency adopted is the highest possible, but the goal is to reach very high 
efficiencies. 
 
4. In order to test the loss prediction models many samples from different materials need to be characterized 
varying frequency, maximum alternative induction, dc bias and eventually temperature. This requires such a large 
number of measurements that some form of automatic instrument should be developed. 
 A B-H analyzer capable of measuring losses using the most common waveforms in power electronics 
might be developed as a student project. The default waveform operation should be sinewave and the power factor 
compensation should be included as selectable function. 
 
5. The dc bias and non-sinusoidal waveform influence may be considered using different approaches based 
upon sinewave made measurements. This suggest that a convenient way for the manufacturers to specify their 
products is to give the family of curves plotted with sinusoidal drive under dc bias conditions. To obtain these 
families of curves many samples of each material should be measured in order to get the average results. 
 Again, this would be only feasible having an automatic measurement system. 
 
6.  As future work, the joint application of the models dealing with both minor loops and dc bias will be used 
to calculate the core losses in power factor corrector circuits. 
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APPENDIX B 
EFFECTIVE PERMEABILITY ESTIMATION 

 

The effective permeability may be expressed as function of an equivalent air gap section aS , defined 

assuming that: FeFeaa SBSB ==Φ . With this assumption, the effective permeability becomes: 
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     (B.1). 

 
From Fig. B.1, this air gap section is roughly approximated considering that the magnetic path section 

inside the core is enlarged due to the fringing effect, in a length proportional to the air gap width. With this 
assumption, the equivalent air gap section is proposed in Fig. B.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. B.1 : Fringing effects   Fig. B.2 : Air gap equivalent section 
 
 
 Based upon the approach of Fig. B.2, the air gap equivalent section is given by: 
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This result should be utilized in eq. B.1 to obtain the effective permeability, and next the LA factor may 

be obtained as: 

( ) [ ]nH
A

l
A re

L
Σ

=
μπ4.0

      (B.3). 

The value of ak may range from 0.7 to 1.9 , and for a central leg air gap may be approximated by [6]: 

a

w
a l

b
k ln1241.0

π
+=       (B.4) 

where wb is the winding window width. 
When the air gap is shared between the external and central legs, experimental measures show that the 

approximative formula may be still used, because the air gap width reduction is partially compensated 
by an increment of ak . 

la 

ka la 

A 

B 
SFe 

Sa 
ka la 

ka la 
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Bm [T] 

 
VOLTAGE 

[Vrms] 

(50 turns) 
 I rms  I p-p 
 [mA]  [mA] 

(5 turns) 
I dc  

[mA] 

 
0.025 

0.2886  5.78   15.66 78.30

 
0.05 

0.5772 11.70   33.24 166.20

 
0.1 

1.1544 22.40   64.10 320.50

 
0.15 

1.7316 33.50   97.00 485.00

 
0.2 

2.3088 44.84     132.30 661.50

 
0.25 

2.8860    58.10  
 175.20 

876.00

 
0.3 

3.4632    75.00  
 240.00 

1200.00

 

NORMAL CURVE 

Material:  3C85  Ferroxcube 

Frequency:  1 kHz 
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

1.260 
1.350 
1.340

6.770 
6.900 
7.000 

35.900 
35.700 
36.100 

99.500 
100.000 
101.500 

200.000 
203.600 
209.000

344.000 
342.000 

527.000 
525.000 
518.000

 
0.025 

1.210 
1.200 

6.710 
6.690 

35.900 
36.300 

99.000 
100.700 

203.000 
205.000

342.000 
344.000 

524.000 
521.000

 
0.05 

1.180 
1.250

6.600 
6.590 

36.800 
36.500 

100.000 
102.000 

203.800 
207.000

339.600 
337.500 
341.000 

 
0.1 

1.360 
1.314

7.820 
7.840 

41.700 
42.100 

106.400 
107.000 
111.000 

216.000 
217.500

345.000 
347.000 
348.500 

 
0.15 

1.640 
1.620

10.340 
9.700 

52.500 
51.900 

120.200 
120.700 
123.000 

224.000 
229.000

 

 
0.2 

2.570 
2.500

14.100 
13.380 

66.500 
66.100 

130.600 
130.850 

 

 

 
0.25 

3.900 
3.780

19.780 
20.050 
19.560 

80.300 
80.200 

  

 
0.3 

7.220 
7.120

30.100 
29.530 

   

 

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3C85 Ferroxcube 

FREQUENCY: 25 kHz 

AC WINDINGS: 5 turns SAT 

SAT 

SAT 

SAT

SAT 
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

2.150 
2.180

14.590 
14.290 
14.440 

78.100 
77.150 

228.500 
228.750 

476.620 
474.300 
477.000

826.620 
823.620 

1277.000 
1275.620

 
0.025 

2.050 
1.980

14.250 
14.300 

76.650 
76.990 

227.750 
227.350 

474.250 
471.330

818.870 
824.500 

1271.000 
1272.870

 
0.05 

2.040 
1.940

14.520 
14.420 

77.910 
78.680 

227.870 
228.370 

475.000 
475.620

821.620 
819.620 

1267.250 
1265.120

 
0.1 

2.250 
2.150

16.790 
16.730 

88.920 
89.210 

247.000 
246.120 

498.870 
499.120

838.000 
842.870 
846.370 
841.250 

1277.620 
1276.620 
1275.870

 
0.15 

2.500 
2.460

21.020 
20.770 

109.110 
108.350 

278.870 
279.620 

534.120 
533.750

870.370 
867.250 

 
0.2 

3.750 
3.720

27.080 
26.810 

133.000 
132.000 

315.750 
312.750 

 

 
0.25 

6.050 
5.950

36.300 
35.900 

159.620 
159.750 

  

 
0.3 

10.200 
10.100

47.190 
47.120 

   

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3C85 Ferroxcube 

FREQUENCY: 50 kHz 

AC WINDINGS: 5 turns 

SAT 

SAT

SAT 

SAT 
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

5.490 
6.060 
5.340 
5.980

38.290 
36.620 
35.800 
35.550 

222.120 
220.620 
220.870 

606.620 
609.750 
608.750 
611.370 

1277.620 
1297.250 
1289.000

2230.870 
2245.500 
2238.500 

3480.000 
3451.250 
3462.500

 
0.025 

5.580 
5.590 
5.660

36.250 
36.150 
36.110 

219.250 
220.500 
220.000 

610.250 
604.750 
605.120 

1288.870 
1282.870 
1291.750

2230.250 
2228.120 
2232.290 

 
0.05 

5.640 
5.520 
5.590

36.640 
36.220 
36.210 

222.370 
222.500 
221.370 

607.620 
614.250 
614.250 

1294.370 
1288.870 
1286.000

2229.370 
2232.750 
2238.500 

 
0.1 

6.000 
5.850 
5.820

41.670 
41.290 
40.900 

248.250 
248.120 
249.000 

661.500 
659.870 
656.000 

1345.750 
1341.250 
1339.000

2273.370 
2261.750 
2270.870 

 
0.15 

7.740 
7.410 
7.390

52.500 
52.450 
52.290 

286.120 
286.120 
284.120 

739.000 
739.120 
737.750 

1414.620 
1418.370 
1417.250

2313.750 
2307.500 

 
0.2 

9.560 
9.700 
9.740

68.190 
68.430 
68.020 

348.620 
347.370 
347.120 

818.500 
817.370 
817.500 

1474.500 
1474.100

 

 
0.25 

15.460 
15.770 
15.710

94.350 
94.290 
94.020 

411.120 
412.620 
411.370 

893.620 
892.620 
896.370 

 

 
0.3 

28.240 
28.010 
28.050

101.840 
102.720 
102.620 

486.750 
486.870 
484.870 

  

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3C85 Ferroxcube 

FREQUENCY: 100 kHz 

AC WINDINGS: 5 turns 

SAT 

SAT

T ≠ Cnt

T ≠ Cnt

SAT 

SAT 
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 
 

(5 turns) 

0.2 
 

(2 turns) 

0.25 0.3 

 
0.0 

19.590 
19.520 
19.550

120.910 
120.310 
119.760 

668.000 
666.620 
668.000 

1871.000 
1874.750 
1875.000 

4056.250 
4083.750 
4022.500 
4108.750

 

 
0.025 

19.620 
19.420 
19.400

118.200 
118.040 
117.620 

666.620 
664.750 
666.250 

1870.750 
1868.870 
1871.120 

4026.250 
4037.500 
3950.000

 

 
0.05 

20.170 
20.000 
20.040

119.610 
118.650 
119.950 

664.000 
661.000 
660.500 

1880.500 
1884.870 
1883.750 

3995.000 
3997.500 
4023.700

 

 
0.1 

22.670 
22.270 
22.220

133.690 
132.270 
131.610 

725.500 
725.620 
725.370 

2002.870 
2003.250 
1997.370 

4025.000 
4133.700 
4165.000

 

 
0.15 

26.070 
26.000 
26.160

165.200 
164.120 
163.390 

874.500 
872.370 
872.250 

2222.370 
2213.750 
2217.250 

4177.500 
4223.700 
4267.500

 

 
0.2 

31.750 
31.470 
31.950

212.750 
211.750 
210.750 

1044.620 
1044.850 
1045.500 

2443.120 
2464.370 
2427.120 

4371.250 
4372.500 
4413.750

 

 
0.25 

45.860 
47.370 
47.100

276.750 
276.120 
276.500 

1185.880 
1197.500 
1202.500 

  

 
0.3 

75.640 
74.500 
74.000

338.620 
330.370 
326.630 

1273.000 
1272.250 

  

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3C85 Ferroxcube 

FREQUENCY: 200 kHz 

AC WINDINGS: 5 and 2 turns 

SATSAT 
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

53.090 
52.970 
53.090

266.870 
264.880 
264.500 

1439.750 
1431.250 
1433.120 

3922.500 
3917.500 
3946.250 

 

 
0.025 

53.640 
53.370 
53.170

261.250 
259.750 
258.750 

1427.000 
1422.500 
1418.870 

  

 
0.05 

55.150 
54.870 
54.760

258.000 
257.120 
257.000 

1416.120 
1418.620 
1417.750 

  

 
0.1 

57.840 
57.450 
57.310

272.120 
271.870 
271.000 

1471.370 
1468.370 
1462.000 

  

 
0.15 

62.590 
61.790 
61.540

307.750 
306.620 
305.370 

1625.120 
1628.370 
1630.370 

  

 
0.2 

70.410 
69.850 
69.450

365.000 
365.370 
363.870 

1887.870 
1881.370 
1878.370 

  

 
0.25 

79.440 
78.860 
78.720

463.870 
464.000 
461.500 

2180.620 
2173.000 
2170.870 

  

 
0.3 

118.990 
119.420 
119.080

631.000 
634.870 
638.620 

   

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3C85 Ferroxcube 

FREQUENCY: 300 kHz 

AC WINDINGS: 2 turns SAT 

T ≠ Cnt 
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Bm [T] 

 
VOLTAGE 

[Vrms] 

I p-p (50 turns) 
[mA] 

 

(5 turns) 
I dc 

[mA] 

 
0.025 

0.2886  21.06  
 19.50

101

 
0.05 

0.5772 41.43   38.16 199

 
0.1 

1.1544 80.60   73.32 385

 
0.15 

1.7316 119.60   110.90 576

 
0.2 

2.3088 161.10   148.40 774

 
0.25 

2.8860 206.00   191.40 994

 
0.3 

3.4632 263.80   246.40 1276

 

NORMAL CURVE 

Material: 3F3 Ferroxcube 

Frequency: 1 kHz   ( DC induction bias error < ±  5 % ) 

core # 1 core # 2 
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

1.275 
1.305 
1.317

5.637 
5.725 
5.650 

30.987 
31.012 
30.800 

89.437 
88.050 
89.037 

188.750 
187.375 
188.125

345.000 
344.750 
344.250 

550.25 
550.500 
553.875

 
0.025 

1.265 
1.229 
1.272

5.525 
5.575 
5.475 

30.587 
30.700 
30.587 

88.312 
87.176 
87.875 

186.750 
186.250 
187.500

339.500 
340.750 
340.000 

545.375 
544.875 
546.625

 
0.05 

1.261 
1.210 
1.240

5.475 
5.500 
5.450 

30.531 
30.575 
30.375 

87.250 
86.675 
87.662 

187.000 
185.750 
186.625

336.250 
336.750 
338.000 

536.000 
536.125 
537.875

 
0.1 

1.300 
1.266 
1.312

5.675 
5.725 
5.637 

32.075 
32.200 
31.962 

92.000 
91.000 
91.500 

193.875 
193.125 
194.125

346.500 
343.875 
344.500 

543.625 
535.875 
537.750

 
0.15 

1.420 
1.367 
1.396

6.537 
7.050 
6.537 

36.487 
36.537 
36.387 

102.000 
101.375 
102.375 

209.500 
209.000 
210.250

366.000 
366.620 
370.870 

 
0.2 

1.656 
1.616 
1.662

7.975 
7.975 
7.987 

43.037 
42.712 
42.700 

117.250 
116.000 
117.000 

233.125 
233.000 
235.125

 

 
0.25 

2.094 
2.047 
2.090

10.175 
10.112 
10.162 

52.787 
52.687 
52.650 

140.250 
138.375 
139.250 

 

 
0.3 

3.261 
3.284 
3.307

14.550 
14.537 
14.650 

73.787 
74.762 
70.200 

  

 

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3F3 Ferroxcube 

FREQUENCY: 25 kHz 

AC WINDINGS: 5 turns 

SAT 

SAT 

SAT 

SAT 
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

2.311 
2.215 
2.311

12.325 
11.988 
12.125 

64.275 
64.480 
63.487 

188.500 
185.375 
186.375 

421.250 
417.375 
418.750

761.875 
753.750 
759.375 

1177.370 
1158.120 
1164.120

 
0.025 

2.188 
2.088 
2.327

11.925 
11.738 
11.525 

63.737 
64.637 
62.887 

185.875 
184.875 
187.625 

415.000 
413.000 
416.500

750.375 
743.875 
757.875 

 
0.05 

2.623 
2.952 
2.904

11.412 
11.687 
11.500 

65.262 
63.375 
62.400 

186.500 
184.000 
185.750 

412.125 
410.375 
412.500

749.500 
743.750 
750.250 

 
0.1 

2.994 
3.105 
3.205

12.062 
12.150 
11.875 

64.500 
65.360 
64.975 

196.375 
194.375 
197.375 

424.750 
424.000 
428.625

760.625 
760.625 
771.625 

 
0.15 

3.398 
3.237 
2.960

13.587 
13.775 
13.675 

76.250 
75.375 
73.625 

219.750 
217.125 
219.625 

452.375 
448.875 
452.750

793.750 
782.625 
787.750 

 
0.2 

3.187 
3.325 
3.475

16.800 
16.862 
16.650 

88.500 
89.750 
89.750 

243.875 
242.250 
246.125 

482.750 
488.125 
484.500

 

 
0.25 

5.025 
5.062 
5.025

22.225 
22.162 
22.475 

107.250 
108.000 
105.125 

  

 
0.3 

6.637 
6.250 
6.062

27.862 
27.737 
28.625 

   

 

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3F3 Ferroxcube 

FREQUENCY: 50 kHz 

AC WINDINGS: 5 turns 

SAT 

SAT

SAT 

SAT 

SAT 

T ≠ Cnt

T ≠ Cnt
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

3.775 
3.750 
3.637 
3.712

22.925 
22.037 
22.150 
22.200 

130.125 
129.375 
129.625 

431.500 
431.000 
432.625 

1074.500 
1072.500 
1071.375

2203.700 
2240.000 
2266.200 

3611.250 
3595.000 
3610.000

 
0.025 

3.400 
3.325 
3.212

21.725 
21.500 
21.225 

128.125 
127.875 
128.875 

426.125 
426.625 
427.500 

1044.750 
1054.000 
1057.750

2181.250 
2150.000 
2240.200 

 
0.05 

3.125 
3.225 
3.262

21.262 
21.412 
21.500 

129.875 
128.875 
128.500 

426.750 
429.000 
427.875 

1033.500 
1032.375 
1032.620

2235.000 
2197.500 
2235.000 

 
0.1 

3.600 
3.487 
3.350

23.237 
23.025 
22.775 

141.625 
142.000 
143.125 

468.250 
463.875 
465.250 

1067.750 
1062.750 
1074.120

2230.000 
2255.000 
2248.700 

 
0.15 

3.837 
3.912 
3.950

27.400 
27.462 
27.500 

175.125 
174.375 
174.625 

572.750 
563.750 
560.000 
540.750 

1214.370 
1200.870 
1234.620

 

 
0.2 

4.812 
4.712 
4.550

34.575 
34.025 
33.537 

217.875 
219.750 
221.125 

635.500 
644.500 
641.620 

 

 
0.25 

6.375 
6.487 
6.575

43.837 
44.062 
44.087 

266.125 
264.875 
264.500 

738.500 
739.000 
741.000 

 

 
0.3 

10.025 
9.887 
9.675

52.462 
51.987 
51.287 

311.875 
313.875 
315.500 

  

 

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3F3 Ferroxcube 

FREQUENCY: 100 kHz 

AC WINDINGS: 5 turns 

SAT 

SAT

SAT 

SAT 

T ≠ Cnt

T ≠ Cnt
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

13.812 
13.712 
13.675

65.637 
67.100 
66.300 

440.125 
438.500 
442.875 

1378.375 
1372.375 
1384.750 

3386.250 
3557.500 
3485.000

 

 
0.025 

13.100 
13.137 
13.237

63.100 
63.162 
62.400 

441.250 
435.875 
436.000 

1368.250 
1353.125 
1346.750 

3540.000 
3578.750 
3487.500

 

 
0.05 

13.637 
13.537 
13.450

62.650 
62.910 
63.012 

440.000 
441.000 
444.375 

1385.750 
1384.750 
1379.250 

3475.500 
3521.250 
3586.250

 

 
0.1 

14.462 
14.450 
14.512

66.725 
66.212 
65.625 

479.750 
476.875 
475.875 

1469.250 
1463.250 
1473.500 

3680.000 
3651.250 
3676.250

 

 
0.15 

14.600 
14.712 
14.637

72.875 
73.250 
73.375 

547.125 
551.125 
555.000 

1670.125 
1667.250 
1675.000 

4122.500 
4156.250 
4253.750

 

 
0.2 

15.962 
16.012 
15.762

85.875 
85.250 
84.250 

656.125 
656.875 
660.750 

1992.500 
1920.000 
1978.750 

 

 
0.25 

18.575 
18.275 
18.125

105.000 
105.375 
105.500 

804.500 
802.000 
800.500 

  

 
0.3 

20.450 
20.425 
20.525

147.375 
146.875 
145.625 

   

 

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3F3 Ferroxcube 

FREQUENCY: 200 kHz 

AC WINDINGS: 2 turns 

SAT 

SAT 

SAT 

T ≠ Cnt
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 Bac [T]
 
Bdc [T] 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

 
0.0 

24.850 
24.750 
24.550

77.450 
77.400 
77.625 

331.750 
331.375 
330.750 

929.000 
933.250 
925.375 

 

 
0.025 

24.212 
24.312 
24.325

76.212 
76.212 
75.612 

328.375 
328.000 
328.000 

920.000 
914.625 
919.750 

 

 
0.05 

24.500 
24.362 
24.200

74.400 
73.962 
74.087 

328.375 
327.000 
327.000 

926.500 
926.125 
925.750 

 

 
0.1 

25.312 
25.375 
25.350

75.075 
74.712 
75.200 

336.000 
335.750 
336.375 

933.500 
946.125 
944.125 

 

 
0.15 

26.550 
26.350 
26.037

78.075 
77.475 
77.100 

360.375 
358.000 
357.750 

1053.500 
1063.375 
1071.750 

 

 
0.2 

28.412 
28.562 
28.537

82.550 
82.500 
82.725 

392.125 
393.250 
394.500 

  

 
0.25 

29.837 
29.650 
29.350

88.900 
88.750 
88.087 

466.875 
464.625 
464.125 

  

 
0.3 

32.250 
32.387 
32.350

93.825 
94.150 
94.112 

   

CORE LOSS  [mW] 
CORE: E/25/13/7 

MATERIAL: 3F3 Ferroxcube 

FREQUENCY: 400 kHz 

AC WINDINGS: 2 turns 

Ampl. limit 

SAT 
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AVERAGE RESULTS 
 

UNITS: Core Losses in mW   Magnetic Induction in T 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 1.317 6.890 35.900 100.333 204.200 343.000 523.333 
0.025 1.205 6.700 36.100 99.850 204.000 343.000 522.500 
0.05 1.215 6.595 36.650 101.000 205.400 339.367 518.000 
0.1 1.337 7.830 41.900 108.133 216.750 346.833  

0.15 1.630 10.020 52.200 121.300 226.500   
0.2 2.535 13.740 66.300 130.725   

0.25 3.840 19.797 80.250   
0.3 7.170 29.815   

 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 2.165 14.440 77.625 228.625 475.973 825.120 1276.310 
0.025 2.015 14.275 76.820 227.550 472.790 821.685 1271.935 
0.05 1.990 14.470 78.295 228.120 475.310 820.620 1266.185 
0.1 2.200 16.760 89.065 246.560 498.995 842.122 1276.703 

0.15 2.480 20.895 108.730 279.245 533.935 868.810  
0.2 3.735 26.945 132.500 314.250   

0.25 6.000 36.100 159.685   
0.3 10.150 47.155   

 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 5.717 36.565 221.203 609.122 1287.957 2238.290 3464.583 
0.025 5.610 36.170 219.917 606.707 1287.830 2230.220  
0.05 5.583 36.357 222.080 612.040 1289.747 2233.540  
0.1 5.890 41.287 248.457 659.123 1342.000 2268.663  

0.15 7.513 52.413 285.453 738.623 1416.747 2310.625  
0.2 9.667 68.213 347.703 817.790 1474.300   

0.25 15.647 94.220 411.703 894.203   
0.3 28.010 102.393 486.163   

 

CORE: E25/13/7  MATERIAL: 3C85  FREQUENCY: 25 kHz 

CORE: E25/13/7  MATERIAL: 3C85  FREQUENCY: 50 kHz 

CORE: E25/13/7  MATERIAL: 3C85  FREQUENCY: 100 kHz 
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AVERAGE RESULTS 
 

UNITS: Core Losses in mW   Magnetic Induction in T 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 19.553 120.327 667.540 1873.583 4067.812   
0.025 19.480 117.953 665.873 1870.247 4004.583   
0.05 20.070 119.403 661.833 1883.040 4005.400   
0.1 22.387 132.523 725.497 2001.163 4107.900   

0.15 26.077 164.237 873.040 2217.790 4222.900   
0.2 31.723 211.750 1044.990 2444.870 4385.833   

0.25 46.777 276.457 1195.293   
0.3 74.713 331.873 1272.625   

 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 53.050 265.417 1434.707 3928.750   
0.025 53.390 259.917 1422.790   
0.05 54.927 257.373 1417.497   
0.1 57.533 271.663 1467.247   

0.15 61.973 306.580 1627.953   
0.2 69.903 364.747 1882.537   

0.25 79.007 463.120 2174.830   
0.3 119.163 634.830   

 
 
 

CORE: E25/13/7  MATERIAL: 3C85  FREQUENCY: 200 kHz 

CORE: E25/13/7  MATERIAL: 3C85  FREQUENCY: 300 kHz 
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AVERAGE RESULTS 
 

UNITS: Core Losses in mW   Magnetic Induction in T 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 1.299 5.671 30.933 88.841 188.083 344.667 551.542 
0.025 1.255 5.525 30.625 87.788 186.833 340.083 545.625 
0.05 1.237 5.475 30.494 87.196 186.458 337.000 536.667 
0.1 1.293 5.679 32.079 91.500 193.708 344.958 539.083 

0.15 1.394 6.708 36.470 101.917 209.583 367.830  
0.2 1.645 7.979 42.816 116.750 234.083   

0.25 2.077 10.150 52.708 139.292   
0.3 3.284 14.579 72.916   

 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 2.279 12.146 64.081 186.750 419.125 758.333 1166.537 
0.025 2.201 11.729 63.754 186.125 414.833 750.708  
0.05 2.826 11.558 63.679 185.417 411.667 747.833  
0.1 3.101 12.029 64.945 196.042 425.792 764.292  

0.15 3.198 13.679 75.083 218.833 451.333 788.042  
0.2 3.329 16.771 89.333 244.083 485.125   

0.25 5.037 22.287 106.792   
0.3 6.316 28.075   

 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 3.718 22.328 129.708 431.708 1072.792 2236.633 3605.417 
0.025 3.312 21.483 128.292 426.750 1052.167 2190.483  
0.05 3.204 21.391 129.417 427.875 1032.832 2222.500  
0.1 3.479 23.012 142.250 465.792 1068.207 2244.567  

0.15 3.900 27.454 174.708 559.312 1216.620   
0.2 4.691 34.046 219.583 640.54   

0.25 6.479 43.995 265.167 739.500   
0.3 9.862 51.912 313.750   

 

CORE: E25/13/7  MATERIAL: 3F3  FREQUENCY: 25 kHz 

CORE: E25/13/7  MATERIAL: 3F3  FREQUENCY: 50 kHz 

CORE: E25/13/7  MATERIAL: 3F3  FREQUENCY: 100 kHz 
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AVERAGE RESULTS 
 

UNITS: Core Losses in mW   Magnetic Induction in T 
 
 
 
          Bac 
Bdc 

0.025 0.05 0.1 0.15 0.2 0.25 0.3 

0.0 13.733 66.346 440.500 1378.500 3476.250   
0.025 13.158 62.887 437.708 1356.042 3535.417   
0.05 13.541 62.857 441.792 1383.250 3527.667   
0.1 14.475 66.187 477.500 1468.667 3669.167   

0.15 14.650 73.167 551.083 1670.792 4177.500   
0.2 15.912 85.125 657.917 1963.750   

0.25 18.325 105.292 802.333   
0.3 20.467 146.625   

 
 
 
 
          Bac 
Bdc 

0.015 0.025 0.05 0.075 0.1 0.15 0.2 

0.0 24.717 77.492 331.292 929.208   
0.025 24.283 76.012 328.125 918.125   
0.05 24.354 74.150 327.458 926.125   
0.1 25.346 74.996 336.042 941.250   

0.15 26.312 77.550 358.708 1062.875   
0.2 28.504 82.592 393.292   

0.25 29.612 88.579 465.208   
0.3 32.329 94.029   

 
 
 
 

CORE: E25/13/7  MATERIAL: 3F3  FREQUENCY: 200 kHz 

CORE: E25/13/7  MATERIAL: 3F3  FREQUENCY: 400 kHz 
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