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Highlights
Trypanosoma cruzi, the vector-borne
protozoan agent of Chagas' disease,
displays a complex population structure
made up of multiple strains showing di-
verse genotypic and ecoepidemiological
features.

Typing of the infecting strain(s) directly in
biological samples may shed new light
on T. cruzi zoonotic distribution and,
more importantly, may facilitate the
study of possible associations between
Trypanosoma cruzi, the protozoan agent of Chagas' disease, displays a com-
plex population structure made up of multiple strains showing a diverse
ecoepidemiological distribution. Parasite genetic variability may be associated
with disease outcome, hence stressing the need to develop methods for T. cruzi
typing in vivo. Serological typing methods that exploit the presence of host anti-
bodies raised against polymorphic parasite antigens emerge as an appealing
approach to address this issue. These techniques are robust, simple, cost-
effective, and are not curtailed by methodological/biological limitations intrinsic
to available genotyping methods. Here, we critically assess the progress towards
T. cruzi serotyping and discuss the opportunity provided by high-throughput
immunomics to improve this field.
parasite genotype and Chagas' disease
clinical outcome.

Detailed descriptions of strain-specific
antibody profiles or signatures emerge
as an appealing approach for in vivo
T. cruzi strain typing.

High-throughput immunomics provides
a unique opportunity to link the increas-
ing ability to catalog variation among
T. cruzi genomes to the identification of
novel polymorphic targets of strain-
specific B cell immunity.
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Trypanosoma cruzi, an Endemic Threat Going Global
Chagas' disease, caused by the parasitic hemoflagellate T. cruzi, is a lifelong, debilitating illness
endemic to the Americas, with an estimated toll of 6–7 million people already infected and
~50 000 new cases per year [1]. T. cruzi infection primarily occurs when humans are exposed to
the contaminated feces of infected hematophagous triatomines that act as vectors. Other docu-
mented modes of transmission include blood transfusion, organ transplantation, and congenital
transmission. In addition, recent outbreaks of acute and virulent cases were shown to be not strictly
vector borne but rather due to accidental ingestion of T. cruzi-tainted food and fluids [2]. In recent
decades, several factors converged to shift the epidemiological landscape for this disease, which
now emerges as a threat to global public health [3]. Despite this alarming situation, the absence of
available vaccines, together with the fact that approved drugs show toxicity and variable efficacy,
determine that themain control strategy for Chagas' disease still relies on the prevention of parasite
transmission.

Biological Implications of T. cruzi Genetic Diversity
T. cruzi is an extremely successful zoonotic parasite, showing a broad, diverse, and poorly under-
stood pattern of circulation among at least seven genera of triatomines and a variety of domestic
and wild mammals [4]. Adaptations to particular mammal and/or insect species together with
ecogeographical barriers, scarce sexual recombination, and iterative population bottlenecks
associated with host–vector switching contribute to structuring the population of this parasite
[5]. Typing schemes developed with various biochemical and genetic markers converged in the
delineation of six major evolutionary lineages or discrete typing units (DTUs) (see Glossary),
termed TcI–TcVI. A potential seventh lineage, Tcbat, and additional divergent sublineages with
putative epidemiological and/or clinical significance have been proposed [6,7]. The evolutionary
relationships among DTUs have not been fully elucidated, but it is clear that TcI, TcII, TcIII, and
TcIV have more ancient origins whereas TcV and TcVI are clusters of hybrid strains, the product
of recent and likely independent genetic crosses between TcII and TcIII parentals [5].
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Glossary
Discrete typing units (DTUs): sets of
stocks of T. cruzi that are genetically
more similar to one another than to any
other stock and are identifiable by
common molecular markers.
Pangenome: a collection of the entire
gene set and its allelic variants obtained
from all strains of a species.
Polymorphic antigen: a molecule that
elicits differential and strain-specific
immune responses in the infected host.
This molecule usually, but not
necessarily, shows qualitative and/or
quantitative differences among
pathogen strains or isolates.
Serotype: a genetically discordant set
of antigenic types that could be
distinguished within certain of a
pathogen’s species by means of
serologic assays.
TSSA core region: a sequence of the
trypomastigote small surface antigen
(TSSA) displayed on the trypomastigote
outer membrane upon processing of its
sorting determinants (signal peptide and
GPI-anchoring signal) and subsequent
maturation in the secretory pathway.
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T. cruzi DTUs have distinct, but not exclusive, geographical, ecological, and epidemiological dis-
tribution [4,5,8]. Briefly, TcI is by far the most widespread DTU, being found throughout endemic
areas in both sylvatic and domestic cycles. In endemic countries located north of the Amazon
basin, TcI is prevalent in human infections. TcII is extremely rare in North and Central America,
though it prevails in domestic cycles in certain regions of the Southern Cone of South America,
particularly in Brazil. TcIII and TcIV are mostly associated with sylvatic transmission cycles.
Noteworthy, TcIV has been also increasingly detected as a secondary agent of Chagas' disease
in Venezuela [9], and found to be involved in oral transmission to humans [2,10]. TcV and TcVI are
mostly restricted to domestic transmission cycles in Southern Cone countries, and particularly in
Argentina and Bolivia. Recent findings however suggest that their distribution could be broader
than appreciated [11,12]. Despite these epidemiological considerations, it should be emphasized
that all six T. cruziDTUs (or seven, including Tcbat) are capable of infecting humans and that there
are geographical overlaps and coexistence of distinct DTUs in the same vector and/or mammal
host population, as well as in a single individual [5].

Initial T. cruzi infection in humans is followed by an acute phase, lasting up to 30–60 days. This
phase is usually asymptomatic or might present as a nonspecific and self-limiting febrile illness.
During the subsequent, chronic phase, parasitemia drops significantly and Chagas' disease
evolves into a wide spectrum of pathological symptoms ranging from subclinical to potentially
fatal myocardiopathy and/or gastrointestinal mega syndromes [1]. In in vitro systems or animal
infection models, T. cruzi genetic diversity has been partially correlated with clinically relevant
phenotypes, such as susceptibility to trypanocidal drugs, tissue distribution, or pathogenesis
[13–15]. In patients, however, these kinds of association remain so far circumstantial and contro-
versial. As extensively discussed [5,16], existing studies may have been blurred by several factors
including flaws in their design,mixed T. cruzi infections, the presence of concurrent pathogens, and
genetic/immunological aspects of local human populations. Notwithstanding this, assignment of
the T. cruzi infecting strain type remains a long-standing research interest in the field, with an
expected positive impact on the overall diagnosis and clinical management of Chagas' disease.

T. cruzi Strain Typing: A Crime Scene Investigation
Pioneering studies aimed at typing T. cruzi strains were based on biochemical markers [17].
Further advances in typing schemes – based on DNA amplification/restriction/hybridization,
karyotyping, sequence-based markers using either a single locus or multiple loci, and amplicon
deep sequencing – have greatly improved parasite genotypic resolution [18–21]. However, and
due to the scarce parasitemia during the chronic phase of Chagas' disease and the low dosage
of some used DNA markers, genotyping methods display suboptimal sensitivity in vivo, usually
requiring isolation and amplification steps which may bias the parasite population. The frequent
occurrence of multistrain infections and the discovery that bloodstream genotypes may differ
from those sequestered within tissues [22,23] further complicate this task. Last, but not least,
T. cruzi genotyping schemes are time- and labor-consuming, costly, and difficult to be imple-
mented in endemic areas, point-of-care sites with limited infrastructure.

In this context, serological typing (serotyping) methods emerge as an appealing alternative. These
methods rely on the use of polymorphic antigens to detect strain-specific antibody signatures.
Serotyping assays are robust, simple, cost-effective, and are not curtailed by relevant methodo-
logical and/or biological limitations intrinsic to currently used T. cruzi genotypingmethods. In favor
of their applicability to T. cruzi, it was shown that this parasite stimulates robust and persistent
humoral immune responses in chronic chagasic patients, regardless of their clinical status [1].
The existence of putatively diagnostic differences in the antigenic constitution of T. cruzi strains,
on the other hand, is supported by (i) comparative genomic studies showing interstrain variations
Trends in Parasitology, March 2021, Vol. 37, No. 3 215
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in the gene dosage, which usually correlates to protein expression yield, and/or in the amino acid
sequences of several deduced proteins (see below); (ii) large differences in the overall proteomic
profile of distinct strains [24,25]; and (iii) often discordant results of serodiagnostic assays when
evaluated on populations of different geographic origin and hence probably infected by different
T. cruzi strains [26,27].

T. cruzi Serotyping: Progress, Challenges, and Limitations
Serotyping Using Whole Parasites
A method for genotype-specific serodiagnosis of T. cruzi infection by means of strain-specific
immunity has been recently developed [28]. This technique, named Chagas-Flow ATE, is
based on the comparative evaluation of IgG responses towards strains representative of major
DTUs associated with human infections (TcI, TcII, and TcVI). To develop this method, authors
recorded the independent reactivities of a panel of reference positive sera (obtained from mice
experimentally infected with different strains) to three major parasite developmental forms from
either the TcI, TcII, or TcVI strain. An algorithm composed of a series of decision trees based
on attributes such as target-antigen reactivity and serum dilution/cut-off was then used to inte-
grate these outcomes and classify individual samples. Chagas-Flow ATE demonstrated an excel-
lent performance for diagnosis of single/mixed experimental T. cruzi infections [28,29], and
potential applicability to direct parasite serotyping in human serum samples [30]. A drawback
of this method is the use of whole parasites as target antigens. It is known that complex and
undefined mixtures of T. cruzi molecules frequently lead to false-positive results when assayed
with sera from individuals suffering certain autoimmune diseases and/or infected with coendemic
pathogens such as Leishmania sp. and Trypanosoma rangeli [31]. In the case of the Chagas-
Flow ATE method, the presence of such cross-reacting antibodies may alter the magnitude of
strain-specific and/or developmental stage-specific signals, thereby affecting the strain typing
decision process. Also, shifts in the T. cruzi antigenic profile over time under culture conditions
[32,33] may entail additional reproducibility issues with the test.

Serotyping Using TSSA
The trypomastigote small surface antigen (TSSA) was the first identified T. cruzi antigen with
serotyping potential [34]. TSSA is a surface adhesion molecule, with mucin-like features [35],
involved in the initial interaction of the trypomastigote with the target cell [36,37]. Epitopemapping
studies led to the identification of a broad (~40 residues long), antigenic region encompassing
most of the TSSA core region [34,38,39] (Figure 1). TSSA alleles display a number of diagnostic
polymorphisms that allow their classification into four ‘isoforms’, each one corresponding to
an ancestral DTU (TcI to TcIV) [34,40]. The majority of these polymorphisms accumulate within
the TSSA core region (Figure 1) and have a major impact on its antigenic properties [34,38,39].
Overall, four major TSSA serotypes could be defined: TSSAI (TcI), TSSAII (TcII), TSSAIII (TcIII),
and TSSAIV (TcIV) (Figure 1). Being hybrids, TcV/TcVI genomes code for both TSSAII and
TSSAIII isoforms.

Currently available T. cruzi genomes were reanalyzed here using the CL Brener strain (TcVI)
TSSAII coding sequence as query (TcCLB.507511.91). Two nonsyntenic TSSA loci could be
defined: a TSSA-tandem locus and a TSSA single-copy locus. The former bears up to 14 identical
or nearly identical TSSA gene copies arranged in a head-to-tail tandem, and it is found in all
strains analyzed so far (Figure 2). Strains from hybrid DTUs (at least for TcVI) seem to have
retained solely TSSAII copies at this tandem locus (Figure 2). The TSSA single-copy locus, on
the other hand, is restricted to TcVI (and likely also TcV) strains (Figure 2), suggesting that it
may have emerged upon their hybridization. This locus codes for a single TSSAIII allele, with a
still undetermined level of expression. Two possible ‘TSSA surface configurations’, displaying
216 Trends in Parasitology, March 2021, Vol. 37, No. 3
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Figure 1. Antigenic and Molecular Features of the Trypomastigote Small Surface Antigen (TSSA). (A) Microarrays displaying completely overlapped 15mer
peptides spanning the sequence of CL Brener (TcVI) TSSAII (XP_808931.1) were probed with purified IgG from human chronic Chagas' disease subjects [39]. Partial
sequences derived from XP_808931.1 evaluated in seroepidemiologic studies are superimposed. Below, a schematic illustration shows polymorphisms among the
predicted amino acid sequences of TSSA alleles (as obtained from TriTrypDB). XP_808931.1 was used as reference and the different structural regions (signal peptide,
central and antigenic core, and GPI-anchoring signal) are indicated as defined in [34]. Allele symbols match those in Figure 2 and were colorized according to the
Trypanosoma cruzi discrete typing unit (DTU) to which they belong (blue, TcII; orange, TcI; green, TcIII; magenta, TcIV). (B) Schematic representation of the ‘TSSA
surface configuration’ and TSSA serotype for trypomastigotes from each DTU (denoted as above, with hybrid lineages colorized in blue and green). Note two possible
TSSA surface configurations for hybrid strains (one displaying minor amounts of the TSSAIII isoform in green, along with the most prevalent and phenotypically
dominant TSSAII isoform in blue). A representative image showing the patchy distribution of TSSAII on the membrane of T. cruzi CL Brener trypomastigotes, typical of
parasite surface molecules [85], is shown in the inset to the right.
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or not minor amounts of the TSSAIII isoform, may be envisaged for hybrid lineages (Figure 1).
TSSAII variants encoded by the TSSA-tandem locus turn out to be prevalent and phenotypically
dominant, thus defining an apparent TSSAII serotype for hybrid strains (Figure 1).

Recombinant, glutathione S-transferase (GST)-fusion proteins encompassing residues 10 to 70–71
of TSSAI and TSSAII sequences (GST-TSSAII10–71, Figure 1) were initially explored as serotyping
tools [34]. This survey, together with others carried out with a shorter TSSAII recombinant protein
(GST-TSSAII24–62, Figure 1) revealed a consistent prevalence of ~80–95% for TSSAII and <5% for
TSSAI in chronic chagasic patients from Southern Cone countries [23,31,41–46]. Further mapping
Trends in Parasitology, March 2021, Vol. 37, No. 3 217
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Figure 2. Genomic Organization of the Trypomastigote Small Surface Antigen (TSSA) in Trypanosoma cruzi
Schematic representation of genomic scaffolds containing TSSA sequences from different discrete typing units (DTUs
(colorized as in Figure 1). We identified two TSSA loci (TSSA-tandem locus and TSSA single-copy locus). Only those
contigs in which at least one synteny block flanking TSSA copies was identified, or those carrying variant TSSA
sequences (ANOX01005286.1, TcII; OGCJ01000576.1, TcIII; AY367112.1, TcIV) were included. For Dm28c (TcI), both
TSSA haplotypes could be identified (MBSY01000671/MBSY01000062 and PRFA01000186/PRFA01000017). The
connecting blocks between the scaffolds highlight the homology between TSSA flanking genes and are colorized
matching them. Annotated genes are indicated by arrow symbols, orientated according to their sense of transcription. The
accession numbers of the annotated sequences (as obtained from TriTrypDB or NCBI) are indicated and separated from
the corresponding strain using underscores; those obtained using third-generation sequencing technologies are marked
in bold.
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studies [38] allowed the definition of a minimal region in TSSAII, from residue 30 to 50, able
to recapitulate its overall serodiagnostic performance (p30–50, Figure 1). Figures determined
by these assays were congruent with the clear preponderance of TcII/TcV/TcVI strains in
domestic cycles in such endemic areas [23,47–50]. Moreover, samples analyzed in parallel
by genotypic and TSSA-based serologic assays showed a good concordance between both
methods [41–43]. In patients from Mexico, Colombia, and Venezuela, and also congruent
with genotypic data, the estimated prevalence of TSSAII dropped to ~30–40% [41]. Despite
the acknowledged dominance of TcI in such countries, recognition of TSSAI was also very
low (~25%, see later) [41].

Building on these previous data, a T. cruzi lineage-specific serological test was developed
from a set of TSSA-derived peptides (termed TSSApep-I, -II/V/VI, -III, and -IV) [51,52]).
When evaluated on chagasic patients, results were in line with those described above,
though the estimated prevalence for TSSApep-II/V/VI was ~70% in Argentina, Brazil, and
Bolivia, and ~10–20% in northern South American countries [51,52]. Disregarding differences
between study populations, the lower sensitivity of TSSApep-II/V/VI as compared to recom-
binant TSSAII proteins may well be attributed to the fact that this peptide solely spans resi-
dues 37 to 52 (Figure 1), hence lacking some critical antigenic determinants [38]. When
assayed in a Bolivian population of 121 chronic patients stratified by Chagas' disease-
associated cardiomyopathy, TSSApep-II/V/VI reactivity correlated with severity of clinical findings,
suggesting it may be explored as a disease prognosis biomarker [51,52]. Surveys conducted using
this set of TSSA-derived peptides also indicated that TcIV strains circulate at low frequency in
domestic cycles from Venezuela and Colombia, which is in agreement with current genotypic
data [5,8].

The proven diagnostic power of TSSApep-II/V/VI stimulated the development of an immuno-
chromatographic diagnostic test, bearing this peptide immobilized on a nitrocellulose mem-
brane and Protein G conjugate for broad detection of specific antibodies. This test was
successfully evaluated for the assignment of T. cruzi lineage infections in humans and in a
range of domestic and wild mammals, thereby leading to numerous insights into parasite
ecoepidemiology [52–55].

Taken together, these data suggest that TSSA has the potential to predict the T. cruzi strain type
on biological samples with near DTU-level accuracy. Despite this, the resolution and specificity of
TSSA-based serotyping assays need to be improved. Intensive peptide-mapping approaches
that dissect the epitopic mesh in the TSSA antigenic core [38] and a better resolution of the variety
of TSSA sequences encoded by TcIII and TcIV DTU [5] are required to partially address these
issues. Assessing the performance of the TSSA serotyping method for the diagnosis of mixed
T. cruzi infections is also required. In addition, exhaustive screening for antibodies specific to
TSSAIII may aid in defining the TSSA serotype of hybrid strains (Figure 1), and, in turn, in the
discrimination between TcII- and TcV/TcVI-caused infections.

Major current challenges of TSSA-based serotypification include the discrimination between
TcV- and TcVI-caused infections, which is a caveat common to most T. cruzi genotyping
methods [18–21], and the accurate identification of TcI-infected individuals. Regarding the
latter aspect, the fact that TSSAI shows poor intrinsic immunogenicity [36] likely explains its
very low seroprevalence across endemic areas, even in those with established dominance of
TcI strains [41,44,51]. Interestingly, heterologous expression of a recombinant O-glycosylated
TSSAI in Leishmania tarentolae displayed enhanced recognition by chagasic sera from northern
South American countries as compared to its deglycosylated counterpart [56].
Trends in Parasitology, March 2021, Vol. 37, No. 3 219
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Coming-of-Age of T. cruzi Serotyping
Because of the T. cruzi genetic diversity and complex antigenic constitution, it would be
extremely unlikely that TSSA or any given single molecule can distinguish parasite strain
types reliably. Rather, large-scale analysis of polymorphic antigens to detect strain-
specific antibody signatures seems to be the way forward. Indeed, sequence analyses
followed by B-cell epitope prediction on deduced proteins derived from CL Brener allelic
pairs has been explored as a novel strategy to identify polymorphic antigens able to
serodiagnose the parasite DTU in experimental infections [57]. On the other hand, our recent
exploration via peptide microarrays of just a fraction (~7%) of the T. cruzi deduced proteome
allowed for the identification and characterization of thousands of novel disease-specific se-
quences [39,58–60], indicating that a vast majority of the parasite's antigenic repertoire remains
uncharacterized. Together, these findings stress the need for more comprehensive screening of
parasite genomic sequences and infected host antibody repertoires to improve and expand the
T. cruzi serotyping tools.

Recent advances in microarray technology and high-throughput immunomics are enabling the
study of B-cell responses at an unprecedented, proteome-wide scale [61]. As exemplified by
studies in other infectious diseases [62–64], high-throughput approaches using protein and
peptide arrays rapidly led to the discovery of strain-specific serological profiles or signatures
that can be next exploited in simplified serological typing assays. In Plasmodium falciparum,
protein microarrays have been successfully used to assay human malaria seroreactivity
towards hundreds to low thousands of antigens [64,65] and to study the dynamics of these
immune responses.

Also coming of age is T. cruzi genomics, now with a reasonable number of genomes sequenced
using third-generation technologies based on long reads [66–69]. Furthermore, the most recent
additions to this list include two genomeswith their assemblies guided by proximity ligationmapping
[70]. These technological advances led to an improved resolution of structural genome features,
including the delineation of highly diverse and immunogenic T. cruzi protein families [66,67,70].
Recent comparative genomics exercises show that the genetic variation between strains is mostly
derived from the more fluid, repetitive or disruptive chromosomal compartments composed of
members of these large gene families [66,70].

The combination of these maturing fields, T. cruzi genomics and high-throughput immunomics,
now provide a path for exploration and discovery of novel antigens with strain-discrimination
capability. One possible strategy would start by designing microarrays with overlapped peptides
spanning natural variants derived from the T. cruzi pangenome. Once the microarray is
produced, the experiments performed are basically highly multiplexed ELISA tests, where the
peptides are incubated with appropriate serum samples or antibodies collected thereof (see
below). This process results in a table of each peptide and a number related to ‘how strong’ its
reactivity was. Data is then processed, possibly reconstructing the original proteins, and used
to draw conclusions about the retrieved antigens: prevalence, specificity, identity, and features
of identified epitopes and, most importantly, lineage discrimination capacity (Figure 3). When
using peptide arrays as a discovery platform, most of the information about spatial configuration
of the original proteins is lost, hence only linear epitopes are discovered and characterized. To
also discover conformational epitopes, protein microarrays, where whole proteins or indepen-
dently folding domains are placed on the solid support, can be used [71]. However, protein
microarrays have some limitations, such as their lower capacity (in comparison with peptide
arrays) and the challenge of achieving a microarray with a collection of properly folded proteins
in the first place.
220 Trends in Parasitology, March 2021, Vol. 37, No. 3
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Figure 3. Schematic View of a Possible Strategy for Discovery and Validation of Trypanosoma cruzi
Polymorphic Antigens. Microarrays (displaying peptides, proteins, glycopeptides, or glycans) can be screened with
antibodies purified from individuals infected with different T. cruzi discrete typing units (DTUs). Parasites (top left) were
colorized according to the DTU to which they belong, as in previous figures (orange, TcI; blue, TcII; green, TcIII; blue
and green, hybrid lineages). The same color code is used to represent a population of Chagas' disease patients
(bottom left) depicting hypothetical single or mixed infections. Antibody (serum) samples can be used to assay
microarrays containing parasite molecules (bottom right). Several rounds of assays can be performed at this stage – in
which identified polymorphic candidate antigens are displayed on additional microarrays for serologic validation. When
using T. cruzi-derived peptide microarrays (top right), precise epitope mappings can be obtained from the
seroreactivity of individual overlapping peptides [39]. If protein microarrays are used, only the antigen is validated (the
epitope may remain unmapped).

Trends in Parasitology
In both cases, good-quality genome sequences are essential to design and produce these
arrays. An alternative to proteome-derived peptides is the use of random sequences. These
can be displayed as synthetic peptides coupled to a solid support or on the surface of biological
platforms [72]. A key advantage of this approach is that it is not designed to accommodate any
given pathogen or disease, such that the same library is universally appropriate. The sequence
bound by an antibody is presumably not the cognate epitope but rather a structural mimic.
Indeed, because the potential diversity of peptide sequences is larger than the sequence
space explored in these arrays a broad range of mimicry is afforded [72]. As for the downside
of random sequence approaches, it is often difficult (and sometimes impossible) to assign the
reactive sequence to the cognate parasite antigen, thus precluding its downstream biological
characterization [72]. Notwithstanding this, the feasibility of random sequences-based assays
for the profiling of different immune responses, including those elicited in chagasic patients, has
been extensively demonstrated [72–76]. A hybrid strategy between scanning the limited number
of coding sequences derived from T. cruzi genomes and the virtually infinite source of random
sequences is the generation of residue variants. In such a randomization process, using
parasite-encoded proteins as a starting point effectively reduces the sequence space that
needs to be explored. Different techniques can be used to generate and explore synthetic
peptide variants (e.g., alanine scans or full-residue scans) or protein variants through shotgun
mutagenesis [77].
Trends in Parasitology, March 2021, Vol. 37, No. 3 221

Image of Figure 3


Outstanding Questions
What would be the real impact of the
accurate identification of the infecting
strain on T. cruzi ecoepidemiological
studies and on the clinical management
of Chagas' disease?

What would be the desired level of
resolution for a T. cruzi strain typing
method – distinction of parasite DTU
or discrimination among strains or
sublineages belonging to the same
DTU?

What are the advantages of serology-
based typing methods over molecular
genotyping in Chagas' disease?

What is the best strategy for the
discovery of T. cruzi polymorphic
antigens? What are the main challenges
in this field? What tools are expected to
help in this process?

What are the main characteristics that
a T. cruzi serotyping test should fulfill?
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Whatever the strategy used to screen and analyze the T. cruzi antigenic landscape, themost prom-
ising selected candidates can be produced and assayed for downstream validation using an exten-
sive panel of appropriate samples. These serological assays can be carried out in a number of
formats, including lower scale protein or peptide microarrays [39,62], antigen-coated bead-
based flow cytometry applications [78], or customized ELISA tests [58]. One major limitation for
the whole process of discovery of T. cruzi polymorphic antigens is the absence of reference
serum standards to calibrate the screening/validation assays. In this sense, the recent call for a
Patient Registry for Chagas' disease could be an excellent opportunity to channel these needs [79].

Final candidates can be integrated in a serotyping test that should be able to (i) discriminate
between T. cruzi-infected and noninfected individuals; (ii) assign the infecting strain, at least
with DTU-level accuracy; and (iii) differentiate between single or mixed infections. Ideally, the
test has to be also easy to assay and interpret, versatile (able to evaluate serum samples from
multiple species), and adaptable to a point-of-care platform, to be deployed in field studies.

A Bittersweet Symphony: T. cruzi Serotyping Using Glycan Antigens
In contrast to bacterial species, where serotyping is often mostly based on glycan antigens, in
T. cruzi there is a lack of well validated antigenic glycans. Considering the unique features of
protein glycosylation pathways in T. cruzi, and the huge functional and diagnostic significance
of carbohydrates on the biology of this organism [80,81], it could be hypothesized that
parasite-derived glycans and/or glycopeptide microarrays may also serve as a starting point for
the discovery of serotyping reagents. The few validated T. cruzi glycoantigens (e.g., α-Gal
epitope) are not, however, appealing for serotyping purposes as they are common to all parasite
genotypes and also to a number of pathogens [82]. One recent exception is the glycosylated
TSSA variant described above [56]. This is a nice example where a poorly seroreactive antigen
variant (nonglycosylated, recombinant TSSAI) can be enhanced by glycosylation.

Concluding Remarks
Antibodies are unique among biomarkers in their ability to identify individuals with past exposure
to a wide array of pathogens: viruses, bacteria, fungi, protozoa, and helminths. The exquisite
resolution of these molecules allows in principle for the distinction not only of the infectious
agent but also of different strains or antigenic subtypes defined within a microbial taxon.
Serotyping could be a rapid, sensitive, cost-effective, and relatively noninvasive alternative to
stringent pathogen genotyping in humans. These techniques have extensive experimental
support and numerous applications in clinical microbiology and vaccine development [83,84].
Although current T. cruzi serotyping approaches offer robust results, they do possess significant
limitations that warrant further investigation (see Outstanding Questions), particularly on the iden-
tification and validation of parasite polymorphic antigens. In this context, high-throughput
immunomic approaches may provide the opportunity to link the increasing ability to catalog
variation among T. cruzi genomes to the identification of novel targets of strain-specific B-cell
immunity.

Development of novel and robust T. cruzi serotyping schemes and/or tools will shed new light
onto the complex and fluctuating association of parasite genotypes with mammal/vector hosts,
biomes, or habitats. Most importantly, they will also facilitate the unraveling of possible relation-
ships between parasite genetic variability and clinical features, a major issue in Chagas' disease
applied research. This, in turn, may lead to a better management of T. cruzi-infected individuals
to improve prognostic outcomes. Once an association between T. cruzi strain and disease phe-
notype is clearly established, experiments can be designed to determine its underlying molecular
basis, which might ultimately pave the way to novel and much needed targets of intervention.
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